Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • two way or one way fixed effect model

    Hello,

    I am writing my master thesis on the effect of implementing GSCM practices on financial performance. I am using a balanced panel data set across 9 year periods with 464 annual observations (i.e. firms). By performing a Hausman test, it says that random effect model is more suitable (p=0,0735)
    However, I am not sure if I should include dummy variables for both year and ID, as now only ID dummies are considered. So how do I examine whether to use a one way or two way model in general (i.e. including both ID and year, or only one of the two). And when using a one way model, how to I determine whether to include ID dummies or year dummies. This decision probably has to be made before doing the Hausman test I think?

    Code:
     xtset ID year, yearly
           panel variable:  ID (strongly balanced)
            time variable:  year, 2006 to 2014
                    delta:  1 year
    
    xtreg TobinsQ laggedGSCMP Firmrisk Firmsize Industry, fe
    note: Industry omitted because of collinearity
    
    Fixed-effects (within) regression               Number of obs      =      3712
    Group variable: ID                              Number of groups   =       464
    
    R-sq:  within  = 0.0050                         Obs per group: min =         8
           between = 0.0356                                        avg =       8.0
           overall = 0.0247                                        max =         8
    
                                                    F(3,3245)          =      5.49
    corr(u_i, Xb)  = -0.0538                        Prob > F           =    0.0009
    
    ------------------------------------------------------------------------------
         TobinsQ |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
     laggedGSCMP |  -.1490492    .108578    -1.37   0.170    -.3619376    .0638393
        Firmrisk |  -.2108832   .1473064    -1.43   0.152    -.4997062    .0779398
        Firmsize |  -.1545399   .0489047    -3.16   0.002    -.2504271   -.0586528
        Industry |          0  (omitted)
           _cons |   3.295451   .3674794     8.97   0.000     2.574936    4.015967
    -------------+----------------------------------------------------------------
         sigma_u |  1.0374074
         sigma_e |  .83317079
             rho |  .60789743   (fraction of variance due to u_i)
    ------------------------------------------------------------------------------
    F test that all u_i=0:     F(463, 3245) =    12.22           Prob > F = 0.0000
    
    . estimates store fixed
    
    . xtreg TobinsQ laggedGSCMP Firmrisk Firmsize Industry, re
    
    Random-effects GLS regression                   Number of obs      =      3712
    Group variable: ID                              Number of groups   =       464
    
    R-sq:  within  = 0.0049                         Obs per group: min =         8
           between = 0.0604                                        avg =       8.0
           overall = 0.0407                                        max =         8
    
                                                    Wald chi2(4)       =     45.61
    corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000
    
    ------------------------------------------------------------------------------
         TobinsQ |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
     laggedGSCMP |   -.071065   .1041549    -0.68   0.495    -.2752048    .1330748
        Firmrisk |  -.1877267   .1332181    -1.41   0.159    -.4488294     .073376
        Firmsize |  -.1471782    .027809    -5.29   0.000    -.2016829   -.0926735
        Industry |  -.0929571   .0275097    -3.38   0.001    -.1468751   -.0390391
           _cons |   3.643309   .2489337    14.64   0.000     3.155407     4.13121
    -------------+----------------------------------------------------------------
         sigma_u |  .97660797
         sigma_e |  .83317079
             rho |    .578762   (fraction of variance due to u_i)
    ------------------------------------------------------------------------------
    
    . estimates store random
    
    . hausman fixed random
    
                     ---- Coefficients ----
                 |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B))
                 |     fixed        random       Difference          S.E.
    -------------+----------------------------------------------------------------
     laggedGSCMP |   -.1490492     -.071065       -.0779841        .0306749
        Firmrisk |   -.2108832    -.1877267       -.0231565        .0628659
        Firmsize |   -.1545399    -.1471782       -.0073617        .0402284
    ------------------------------------------------------------------------------
                               b = consistent under Ho and Ha; obtained from xtreg
                B = inconsistent under Ha, efficient under Ho; obtained from xtreg
    
        Test:  Ho:  difference in coefficients not systematic
    
                      chi2(3) = (b-B)'[(V_b-V_B)^(-1)](b-B)
                              =        6.95
                    Prob>chi2 =      0.0735
    Last edited by Noor Hend; 02 Apr 2019, 10:53.

  • #2
    You'll increase your chances of a useful answer by following the FAQ on asking questions - provide Stata code in code delimiters, readable Stata output, and sample data using dataex.

    You don't include ID as a dummy - the xtreg takes care of that. You enter year as i.year. You can then test if the year dummies are jointly zero (after xtreg, run xtreg,coefl to see how to refer to the dummies).

    Comment

    Working...
    X