Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Predicted latent variables from SEM estimation

    Hi all,
    I am estimating a model with SEM, using the following command:
    Code:
    sem (visual -> v1, ) (visual -> v2, ) (visual -> v3, ) (verbal -> v4, ) ///
    (verbal -> v5, ) (verbal -> v6, ) (speed -> v7, ) (speed -> v8, ) ///
    (speed -> v9, ), covstruct(_lexogenous, diagonal) vce(sbentler) ///
    standardized latent(visual verbal speed ) cov( visual*verbal visual*speed ///
    verbal*speed) nocapslatent
    The results in matrix form is:

    PHP Code:

    Endogenous variables on endogenous variables

                     
    observed                                                                                          
                Beta 
    |        v1         v2         v3         v4         v5         v6         v7         v8         v9
        
    -------------+---------------------------------------------------------------------------------------------------
        
    observed     |                                                                                                  
                  
    v1 |         0                                                                                        
                  v2 
    |         0          0                                                                              
                  v3 
    |         0          0          0                                                                  
                  v4 
    |         0          0          0          0                                                        
                  v5 
    |         0          0          0          0          0                                            
                  v6 
    |         0          0          0          0          0          0                                  
                  v7 
    |         0          0          0          0          0          0          0                      
                  v8 
    |         0          0          0          0          0          0          0          0            
                  v9 
    |         0          0          0          0          0          0          0          0          0
        
    -----------------------------------------------------------------------------------------------------------------

    Exogenous variables on endogenous variables

                     
    latent                          
               Gamma 
    |    visual     verbal      speed
        
    -------------+---------------------------------
        
    observed     |                                
                  
    v1 |         1          0          0
                  v2 
    |  .4907708          0          0
                  v3 
    |   1.23306          0          0
                  v4 
    |         0          1          0
                  v5 
    |         0   1.319723          0
                  v6 
    |         0   2.247793          0
                  v7 
    |         0          0          1
                  v8 
    |         0          0   1.065948
                  v9 
    |         0          0   1.655825
        
    -----------------------------------------------

    Covariances of error variables

                     
    observed                                                                                          
                 Psi 
    |      e.v1       e.v2       e.v3       e.v4       e.v5       e.v6       e.v7       e.v8       e.v9
        
    -------------+---------------------------------------------------------------------------------------------------
        
    observed     |                                                                                                  
                
    e.v1 |  25.73631                                                                                        
                e
    .v2 |         0   14.38707                                                                              
                e
    .v3 |         0          0   35.64868                                                                  
                e
    .v4 |         0          0          0   2.837749                                                        
                e
    .v5 |         0          0          0          0   6.702231                                            
                e
    .v6 |         0          0          0          0          0   19.89547                                  
                e
    .v7 |         0          0          0          0          0          0   317.6616                      
                e
    .v8 |         0          0          0          0          0          0          0   160.4738            
                e
    .v9 |         0          0          0          0          0          0          0          0   693.0864
        
    -----------------------------------------------------------------------------------------------------------------

    Intercepts of endogenous variables

                        
    observed                                                                                          
              alpha 
    |        v1         v2         v3         v4         v5         v6         v7         v8         v9
        
    -------------+---------------------------------------------------------------------------------------------------
               
    _cons |  29.57931       24.8   15.96552   9.951724   18.84828   17.28276   90.17931   109.7655   191.7793
        
    -----------------------------------------------------------------------------------------------------------------

    Covariances of exogenous variables

                     
    latent                          
                 Phi 
    |    visual     verbal      speed
        
    -------------+---------------------------------
        
    latent       |                                
              
    visual |  21.73498                      
              verbal 
    |  7.338981   8.477162            
               speed 
    |  38.11427   15.28808   244.0304
        
    -----------------------------------------------

    Means of exogenous variables

                     
    latent                          
               kappa 
    |    visual     verbal      speed
        
    -------------+---------------------------------
                
    mean |         0          0          0
        
    ----------------------------------------------- 

    When I am predicting the latent variables, I get the following results:

    Code:
    predict visual verbal speed, latent(visual verbal speed)
    sum visual verbal speed
    PHP Code:
        Variable |        Obs        Mean    StdDev.       Min        Max
    -------------+---------------------------------------------------------
          
    visual |        145   -4.32e-09    4.000018  -9.592437   12.42246
          verbal 
    |        145   -1.23e-09    2.746986  -7.786823   7.084102
           speed 
    |        145    3.21e-08    13.91826   -40.7785   43.87231 

    My questions are:

    1) Why the std. dev. of the predicted latent variables are smaller than the sqrt of the variances of the variables in matrix Phi?

    2) If I use
    Code:
    estat framework, stand
    the latent variables are standardized in the Phi matrix; zero mean and unit variance. Is there any way to predict standard latent variables directly, or one should always predict them first and then standardize them with:

    Code:
    egen vis = std(visual)
    Thanks for taking the time,
    Emma
    Last edited by Emma Zandi; 27 Mar 2019, 02:31.

  • #2
    There is no one who could help me with the answers to the questions?

    Comment


    • #3
      Have you looked at Example 14 in the user's manual entry for sem? In the default setup (first indicator variable's loading constrained to be one for each latent factor), the variance of the prediction for the latent factor will be the same as the variance of the prediction of the first indicator variable.

      Comment

      Working...
      X