Dear Statalist,
I am using Stata 15.1 and want to estimate the marginal effects of an ordered logit model that has an outcome variable with three categories.
When running the model
it shows the following output:
However, when I want to estimate the marginal effects with
It just gives me the error message "could not calculate numerical derivatives -- discontinuous region with missing values encountered
r(459);"
I can avoid this problem by dropping the binary trust variable but this is not what I want. Also when running the binary logit, it works perfectly with the specified variables. Can someone explain why the calculation does not run through? Is there a way to fix this or are the variables simply not made for this model?
Thanks!!!
I am using Stata 15.1 and want to estimate the marginal effects of an ordered logit model that has an outcome variable with three categories.
When running the model
Code:
xtologit insurance_type rain_previous WTP_group P_InsuranceC Female age2 Educ2 /// i.InsuranceExp##i.InsuranceUnderstanding Trust_Company HHsize2 DepRate Crowding RCSI /// FamilyRemittances DurationFarmer RainFed log_Yield AverProdSold AverDangerProdLoss /// RiskAversion, vce(robust) nolog
HTML Code:
Random-effects ordered logistic regression Number of obs = 218 Group variable: HHid Number of groups = 56 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 3.9 max = 5 Integration method: mvaghermite Integration pts. = 12 Wald chi2(23) = 50.98 Log pseudolikelihood = -185.80101 Prob > chi2 = 0.0007 (Std. Err. adjusted for 56 clusters in HHid) ----------------------------------------------------------------------------------------------------- | Robust insurance_type | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------------------------------+---------------------------------------------------------------- rain_previous | -.0622835 .1704658 -0.37 0.715 -.3963903 .2718234 WTP_group | 4.129787 2.252134 1.83 0.067 -.2843142 8.543888 P_InsuranceC | -.1946897 .5041385 -0.39 0.699 -1.182783 .7934037 Female | -.6773839 .45346 -1.49 0.135 -1.566149 .2113813 age2 | -.0001368 .0002462 -0.56 0.579 -.0006194 .0003458 Educ2 | -.0168312 .0207194 -0.81 0.417 -.0574405 .0237782 1.InsuranceExp | .6841136 1.052551 0.65 0.516 -1.378848 2.747075 | InsuranceUnderstanding | 2 | -.3914879 1.11747 -0.35 0.726 -2.581688 1.798713 3 | .7297591 .9662533 0.76 0.450 -1.164063 2.623581 | InsuranceExp#InsuranceUnderstanding | 1 2 | .4299672 1.260509 0.34 0.733 -2.040586 2.90052 1 3 | -.1093954 1.09006 -0.10 0.920 -2.245873 2.027083 | Trust_Company | -.0792627 .3887562 -0.20 0.838 -.8412109 .6826855 HHsize2 | .0092903 .0036231 2.56 0.010 .0021892 .0163913 DepRate | .0620267 .6466889 0.10 0.924 -1.20546 1.329514 Crowding | .3460283 .3461374 1.00 0.317 -.3323885 1.024445 RCSI | .2281215 .1541255 1.48 0.139 -.073959 .530202 FamilyRemittances | -.1089542 .3493816 -0.31 0.755 -.7937295 .5758211 DurationFarmer | -.0098795 .0386288 -0.26 0.798 -.0855906 .0658316 RainFed | .3382859 .5544276 0.61 0.542 -.7483723 1.424944 log_Yield | -.2135142 .1554528 -1.37 0.170 -.5181961 .0911678 AverProdSold | .0096645 .0057879 1.67 0.095 -.0016795 .0210086 AverDangerProdLoss | -.1618212 .1662221 -0.97 0.330 -.4876106 .1639681 RiskAversion | .5916548 .4358455 1.36 0.175 -.2625866 1.445896 ------------------------------------+---------------------------------------------------------------- /cut1 | 1.675089 2.847313 -3.905542 7.25572 /cut2 | 4.032432 2.901428 -1.654263 9.719127 ------------------------------------+---------------------------------------------------------------- /sigma2_u | 6.80e-32 1.25e-31 1.83e-33 2.52e-30 -----------------------------------------------------------------------------------------------------
Code:
margins, dydx(*) predict(outcome(3))
r(459);"
I can avoid this problem by dropping the binary trust variable but this is not what I want. Also when running the binary logit, it works perfectly with the specified variables. Can someone explain why the calculation does not run through? Is there a way to fix this or are the variables simply not made for this model?
Thanks!!!
Comment