Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Inpreting multilevel

    Hello statalist,
    I have a problem interpreting my meoprobit outcomes, can anyone help me to do it. The interactions are not good. Does anyone know how to improve this model? Thank you. Lourdes.

    MODEL1: NULL MODEL

    . meoprobit satisfaction_ordered Country:

    Fitting fixed-effects model:

    Iteration 0: log likelihood = -32960.327
    Iteration 1: log likelihood = -32960.327

    Refining starting values:

    Grid node 0: log likelihood = -32567.327

    Fitting full model:

    Iteration 0: log likelihood = -32567.327 (not concave)
    Iteration 1: log likelihood = -32561.023 (not concave)
    Iteration 2: log likelihood = -32554.723 (not concave)
    Iteration 3: log likelihood = -32548.521 (not concave)
    Iteration 4: log likelihood = -32542.56 (not concave)
    Iteration 5: log likelihood = -32540.081
    Iteration 6: log likelihood = -32537.608
    Iteration 7: log likelihood = -32533.409
    Iteration 8: log likelihood = -32533.399
    Iteration 9: log likelihood = -32533.399

    Mixed-effects oprobit regression Number of obs = 32,885
    Group variable: Country Number of groups = 26

    Obs per group:
    min = 972
    avg = 1,264.8
    max = 3,357

    Integration method: mvaghermite Integration pts. = 7

    chi2() = .
    Log likelihood = -32533.399 Prob > chi2 = .

    satisfacti~d Coef. Std. Err. z P>z [95% Conf. Interval]

    /cut1 -1.970212 .043203 -45.60 0.000 -2.054888 -1.885536
    /cut2 -1.073677 .041564 -25.83 0.000 -1.155141 -.9922129
    /cut3 .6853506 .0413694 16.57 0.000 .6042681 .7664331

    Country
    var(_cons) .0428871 .0122385 .0245145 .0750292

    LR test vs. oprobit model: chibar2(01) = 853.86 Prob >= chibar2 = 0.0000

    MODEL 2: HOFSTEDE CULTURAL VALUES AND INTERACTIONS

    . meoprobit satisfaction_ordered public_sector1 female age seniority superior_worker education_primary education_
    > tertiary marital_status child agriculture services construction employees_2_9 employees_250_more person_job_fit
    > unlimited_contract future_prospect_1 income trustworthiness teams telework training_general routine job_strain_e
    > ffort stress work_hours pdi idv mas uai public_pdi public_idv public_mas public_uai unemployment gdppercapitapp
    > p score public_unemployment public_score public_gdp Country:

    Fitting fixed-effects model:

    Iteration 0: log likelihood = -12222.832
    Iteration 1: log likelihood = -10776.306
    Iteration 2: log likelihood = -10765.163
    Iteration 3: log likelihood = -10765.157
    Iteration 4: log likelihood = -10765.157

    Refining starting values:

    Grid node 0: log likelihood = -10782.834

    Fitting full model:

    Iteration 0: log likelihood = -10782.834 (not concave)
    Iteration 1: log likelihood = -10773.512 (not concave)
    Iteration 2: log likelihood = -10764.191 (not concave)
    Iteration 3: log likelihood = -10753.363 (not concave)
    Iteration 4: log likelihood = -10740.699
    Iteration 5: log likelihood = -10738.404
    Iteration 6: log likelihood = -10737.742
    Iteration 7: log likelihood = -10737.735
    Iteration 8: log likelihood = -10737.735

    Mixed-effects oprobit regression Number of obs = 12,351
    Group variable: Country Number of groups = 26

    Obs per group:
    min = 206
    avg = 475.0
    max = 1,130

    Integration method: mvaghermite Integration pts. = 7

    Wald chi2(40) = 2501.20
    Log likelihood = -10737.735 Prob > chi2 = 0.0000

    satisfaction_ordered Coef. Std. Err. z P>z [95% Conf. Interval]

    public_sector1 -.5146032 .6081288 -0.85 0.397 -1.706514 .6773074
    female .000699 .0238504 0.03 0.977 -.0460468 .0474449
    age -.0021584 .0012014 -1.80 0.072 -.0045131 .0001963
    seniority .002461 .00141 1.75 0.081 -.0003026 .0052246
    superior_worker .1019307 .0305997 3.33 0.001 .0419563 .1619051
    education_primary .0100046 .0692935 0.14 0.885 -.1258082 .1458174
    education_tertiary .0906328 .026668 3.40 0.001 .0383644 .1429012
    marital_status .0219079 .0260455 0.84 0.400 -.0291402 .0729561
    child .01154 .0220604 0.52 0.601 -.0316976 .0547776
    agriculture .0241308 .0790291 0.31 0.760 -.1307634 .1790249
    services .0265813 .0297462 0.89 0.372 -.0317202 .0848827
    construction -.0294421 .0510182 -0.58 0.564 -.1294358 .0705516
    employees_2_9 .0303672 .0315227 0.96 0.335 -.0314162 .0921507
    employees_250+ -.0643988 .0246632 -2.61 0.009 -.1127378 -.0160598
    person_job_fit .0465068 .0217989 2.13 0.033 .0037816 .0892319
    unlimited_contract .0855052 .0371816 2.30 0.021 .0126306 .1583798
    future_prospect_1 .71721 .0353359 20.30 0.000 .6479529 .7864671
    income .0000663 .0000128 5.18 0.000 .0000412 .0000914
    trustworthiness .6131421 .0261401 23.46 0.000 .5619085 .6643757
    teams .0837657 .0226385 3.70 0.000 .039395 .1281363
    telework .0412644 .0113144 3.65 0.000 .0190886 .0634402
    training_general .2096173 .0234206 8.95 0.000 .1637137 .2555209
    routine -.0549751 .0256104 -2.15 0.032 -.1051705 -.0047798
    job_strain_effort .0635692 .0066427 9.57 0.000 .0505497 .0765887
    stress -.2596727 .0103035 -25.20 0.000 -.2798673 -.2394782
    work_hours -.0067331 .0012273 -5.49 0.000 -.0091385 -.0043277
    pdi -.0074371 .0018362 -4.05 0.000 -.011036 -.0038382
    idv -.0026181 .0020658 -1.27 0.205 -.0066669 .0014307
    mas .0048094 .0011362 4.23 0.000 .0025826 .0070362
    uai -1.60e-06 .0018018 -0.00 0.999 -.003533 .0035298
    public_pdi .003006 .0018509 1.62 0.104 -.0006218 .0066337
    public_idv .0009634 .0017942 0.54 0.591 -.0025531 .0044799
    public_mas -.0018304 .0010919 -1.68 0.094 -.0039705 .0003097
    public_uai -.0011042 .0015484 -0.71 0.476 -.0041391 .0019307
    unemployment -.00808 .0055305 -1.46 0.144 -.0189196 .0027596
    gdppercapita -2.34e-06 2.52e-06 -0.93 0.354 -7.29e-06 2.61e-06
    score -.006008 .007906 -0.76 0.447 -.0215034 .0094873
    public_unemp .0129683 .0045978 2.82 0.005 .0039567 .0219798
    public_score .0031748 .0072322 0.44 0.661 -.0110001 .0173496
    public_gdp 3.70e-06 2.29e-06 1.61 0.106 -7.91e-07 8.19e-06

    /cut1 -3.182658 .7047142 -4.52 0.000 -4.563872 -1.801443
    /cut2 -2.123575 .7043463 -3.01 0.003 -3.504069 -.7430821
    /cut3 -.0600805 .7041524 -0.09 0.932 -1.440194 1.320033

    Country
    var(_cons) .0121157 .004399 .005947 .0246833

    LR test vs. oprobit model: chibar2(01) = 54.85 Prob >= chibar2 = 0.0000


  • #2
    Please prefer to use - dataex - or the code delimiters to share command, output as well as data.

    You may wish to read the FAQ advice and follow the instructions concerning these matters.

    You may also wish to explain what you meant by "the interactions are not good".
    Best regards,

    Marcos

    Comment


    • #3
      Hello Marcos, sorry about that. I am trying to run multilevel ordered regression. I study job satisfaction (dependent v.) in the public sector (independent v.) in UE-26 trying to explain differences with Hofstede cultural values (independent explanatory). The problem is that interaction effects are not significant. Have you got any idea how to improve this model? I use stata 14. Does this help you?
      Many thanks,
      Lourdes.


      Code:
      * Example generated by -dataex-. To install: ssc install dataex
      clear
      input byte Country float(satisfaction_ordered public_sector1 female age seniority superior_worker education_primary education_tertiary marital_status child) int pdi byte idv int(mas uai) float(public_pdi public_idv public_mas public_uai income)
       9 3 0 0 42 20 0 0 0 1 1  33 63  26  59 0 0 0 0     1900
       4 4 0 1 33  7 1 0 0 1 0  73 33  40  80 0 0 0 0        .
      26 4 0 1 34 10 0 0 0 0 1  57 51  42  86 0 0 0 0      800
      12 3 0 1 44  1 0 0 0 1 0  60 35  57 112 0 0 0 0      540
      23 3 0 0 36 10 0 0 0 1 0  90 30  42  90 0 0 0 0   383.86
      13 3 0 1 45  5 0 0 0 1 1  46 80  88  82 0 0 0 0        .
       2 3 0 1 55  2 1 0 1 1 0  65 75  54  94 0 0 0 0     4000
      27 4 0 0 75 15 0 1 0 1 0  31 71   5  29 0 0 0 0    533.5
       2 4 0 0 51  6 0 0 0 1 0  65 75  54  94 0 0 0 0      950
      12 3 0 0 42 15 0 0 1 1 1  60 35  57 112 0 0 0 0        .
      19 4 0 1 36  . 0 0 0 1 1  56 59  47  96 0 0 0 0      600
       1 4 0 1 36  1 0 0 0 1 0  11 55  79  70 0 0 0 0     1000
       7 4 0 0 59  1 0 0 0 1 0  18 74  16  23 0 0 0 0 2144.688
      15 3 0 1 50 10 0 0 0 0 0  50 76  70  75 0 0 0 0      800
      26 3 0 0 39  8 0 0 0 1 1  57 51  42  86 0 0 0 0     1200
       4 3 0 1 53  8 0 0 0 . .  73 33  40  80 0 0 0 0   422.72
      27 4 0 1 31  2 0 0 1 1 1  31 71   5  29 0 0 0 0   800.25
      11 2 0 1 52 22 0 0 0 1 0  35 67  66  65 0 0 0 0      580
       2 3 0 1 39  5 0 0 0 0 1  65 75  54  94 0 0 0 0        .
      27 3 0 0 49 25 0 0 0 . .  31 71   5  29 0 0 0 0   1493.8
      21 3 0 0 58  . 0 0 0 1 0  68 60  64  93 0 0 0 0   601.68
      27 4 0 0 68  3 0 0 1 . .  31 71   5  29 0 0 0 0        .
      14 3 0 0 23  . 0 0 0 1 1  28 70  68  35 0 0 0 0        .
      19 2 0 0 47  3 0 0 0 1 0  56 59  47  96 0 0 0 0      740
      25 4 0 0 40 10 1 0 0 1 1  71 27  19  88 0 0 0 0     3000
      26 4 0 0 46 15 0 0 0 1 1  57 51  42  86 0 0 0 0        .
      26 3 0 1 37  1 0 0 0 0 1  57 51  42  86 0 0 0 0      300
      27 3 0 0 31 11 0 0 0 . .  31 71   5  29 0 0 0 0   2454.1
      10 4 0 0 27  . 0 0 1 1 1  68 71  43  86 0 0 0 0     1800
       4 4 0 1 43 20 1 0 0 1 1  73 33  40  80 0 0 0 0        .
       2 3 0 0 46 18 1 0 1 . .  65 75  54  94 0 0 0 0     2700
       9 3 0 0 54  7 0 0 0 . .  33 63  26  59 0 0 0 0     2300
       4 3 0 1 40 10 0 0 0 1 1  73 33  40  80 0 0 0 0   435.93
      14 3 0 0 72 48 0 1 0 1 0  28 70  68  35 0 0 0 0        .
      15 3 0 0 41 10 0 0 1 0 0  50 76  70  75 0 0 0 0     1650
       3 3 0 1 39  . 0 0 0 1 0  70 30  40  85 0 0 0 0        .
      26 3 0 0 35  4 0 0 0 1 1  57 51  42  86 0 0 0 0     1500
      11 3 0 0 50 11 0 0 0 1 1  35 67  66  65 0 0 0 0     2300
      12 3 0 1 50  4 0 0 0 1 1  60 35  57 112 0 0 0 0      450
      26 4 0 1 47 20 1 0 0 1 1  57 51  42  86 0 0 0 0        .
      20 3 0 0 63 34 0 0 1 1 0  38 80  14  53 0 0 0 0     1900
      12 3 0 1 37  6 1 0 1 0 1  60 35  57 112 0 0 0 0      700
      22 3 0 1 49  3 0 0 0 1 0  63 27  31 104 0 0 0 0      700
      23 3 0 0 40 15 0 0 0 1 0  90 30  42  90 0 0 0 0   248.38
      26 4 0 1 24  . 0 0 1 0 0  57 51  42  86 0 0 0 0      700
      25 3 0 1 42  . 0 0 1 0 0  71 27  19  88 0 0 0 0     1100
      10 3 0 1 50  4 0 0 1 1 1  68 71  43  86 0 0 0 0      450
      26 2 0 1 40  1 0 0 0 1 1  57 51  42  86 0 0 0 0      400
      11 3 0 1 29  2 0 0 1 . .  35 67  66  65 0 0 0 0     2700
      12 3 0 0 57 30 1 0 1 1 1  60 35  57 112 0 0 0 0        .
      10 4 0 0 24  4 1 0 1 . .  68 71  43  86 0 0 0 0     2850
      26 4 0 1 59 30 0 0 0 1 1  57 51  42  86 0 0 0 0        .
      22 2 0 0 51  . 0 1 0 0 0  63 27  31 104 0 0 0 0      350
      15 3 0 0 49 12 1 0 0 1 0  50 76  70  75 0 0 0 0        .
      22 3 0 1 67  5 0 0 0 1 0  63 27  31 104 0 0 0 0      100
      17 3 0 0 42  8 1 0 0 1 1  42 60  19  65 0 0 0 0     1000
      10 4 0 0 44 11 0 0 0 . .  68 71  43  86 0 0 0 0        .
      25 3 0 0 19  . 0 0 0 0 0  71 27  19  88 0 0 0 0      650
      22 3 0 0 32  . 0 0 0 1 0  63 27  31 104 0 0 0 0      510
      12 1 0 0 36  2 1 0 0 0 0  60 35  57 112 0 0 0 0      610
      14 3 0 1 59 40 1 0 0 1 0  28 70  68  35 0 0 0 0     1200
      11 3 0 1 59 25 1 0 1 1 0  35 67  66  65 0 0 0 0     3000
      25 4 0 1 51 11 1 0 0 . .  71 27  19  88 0 0 0 0      900
      11 4 0 1 65 15 0 0 0 . .  35 67  66  65 0 0 0 0      450
       8 3 0 1 28  5 0 0 0 1 1  40 60  30  60 0 0 0 0        .
       9 3 0 0 39 12 0 0 0 1 1  33 63  26  59 0 0 0 0     1300
      19 3 0 0 36  1 0 0 0 0 0  56 59  47  96 0 0 0 0     1400
      14 3 0 1 48  3 0 0 1 1 1  28 70  68  35 0 0 0 0        .
      11 3 0 1 61 20 0 0 0 1 0  35 67  66  65 0 0 0 0      800
      23 3 0 0 40  . 0 0 0 1 1  90 30  42  90 0 0 0 0        .
      26 4 0 1 51  1 0 0 0 1 1  57 51  42  86 0 0 0 0        .
       2 3 0 0 36  2 0 0 1 . .  65 75  54  94 0 0 0 0     2000
      23 4 0 1 45  . 0 0 0 1 0  90 30  42  90 0 0 0 0    451.6
      25 2 0 0 29  6 0 0 0 1 1  71 27  19  88 0 0 0 0      750
       2 3 0 0 25  5 0 0 0 . .  65 75  54  94 0 0 0 0     1350
      12 2 0 0 34 14 1 0 1 1 1  60 35  57 112 0 0 0 0      900
       1 3 0 0 39 19 0 0 0 . .  11 55  79  70 0 0 0 0     1650
       2 2 0 1 49 10 1 0 0 1 0  65 75  54  94 0 0 0 0     1200
      12 3 0 0 40  . 0 0 0 1 1  60 35  57 112 0 0 0 0      400
      10 3 0 1 55 36 0 0 0 1 0  68 71  43  86 0 0 0 0     1500
      13 3 0 0 35  2 0 0 0 1 1  46 80  88  82 0 0 0 0        .
       9 3 0 1 48  3 0 0 1 1 1  33 63  26  59 0 0 0 0     2500
      26 2 0 0 26  1 0 0 0 0 0  57 51  42  86 0 0 0 0      600
      16 2 0 1 57  4 0 0 0 0 1  44 70   9  63 0 0 0 0      240
       1 4 0 1 72 15 0 0 0 1 0  11 55  79  70 0 0 0 0      350
      24 4 0 0 36  1 0 0 0 1 1 104 52 110  51 0 0 0 0      850
      26 3 0 0 54  1 0 0 0 . .  57 51  42  86 0 0 0 0        .
      12 4 0 1 30  2 0 0 1 1 1  60 35  57 112 0 0 0 0      600
      10 3 0 0 32  . 0 0 0 0 0  68 71  43  86 0 0 0 0     1890
       2 3 0 0 32  2 0 1 0 0 0  65 75  54  94 0 0 0 0     1300
       3 4 0 0 34  3 0 0 0 0 1  70 30  40  85 0 0 0 0   409.04
      24 3 0 0 35  1 0 0 1 1 1 104 52 110  51 0 0 0 0        .
      12 3 0 0 48 20 0 0 0 1 1  60 35  57 112 0 0 0 0     1000
      10 4 0 1 38  3 0 0 1 0 1  68 71  43  86 0 0 0 0     3000
      12 3 0 1 55 26 1 0 1 1 0  60 35  57 112 0 0 0 0     1400
       2 4 0 0 59  6 0 0 0 1 1  65 75  54  94 0 0 0 0     1210
       9 3 0 0 36 15 0 0 1 . .  33 63  26  59 0 0 0 0     3600
      12 4 0 1 53 25 0 0 1 1 0  60 35  57 112 0 0 0 0        .
      17 3 0 0 35  2 0 0 1 1 0  42 60  19  65 0 0 0 0      900
      20 2 0 0 59  4 0 0 0 . .  38 80  14  53 0 0 0 0     2000
      end
      label values Country Country
      label def Country 1 "Austria", modify
      label def Country 2 "Belgium", modify
      label def Country 3 "Bulgaria", modify
      label def Country 4 "Croatia", modify
      label def Country 7 "Denmark", modify
      label def Country 8 "Estonia", modify
      label def Country 9 "Finland", modify
      label def Country 10 "France", modify
      label def Country 11 "Germany", modify
      label def Country 12 "Greece", modify
      label def Country 13 "Hungary", modify
      label def Country 14 "Ireland", modify
      label def Country 15 "Italy", modify
      label def Country 16 "Latvia", modify
      label def Country 17 "Lithuania", modify
      label def Country 19 "Malta", modify
      label def Country 20 "Netherlands", modify
      label def Country 21 "Poland", modify
      label def Country 22 "Portugal", modify
      label def Country 23 "Romania", modify
      label def Country 24 "Slovakia", modify
      label def Country 25 "Slovenia", modify
      label def Country 26 "Spain", modify
      label def Country 27 "Sweden", modify
      label values satisfaction_ordered Q88
      label def Q88 1 "Very satisfied", modify
      label def Q88 2 "Satisfied", modify
      label def Q88 3 "Not very satisfied", modify
      label def Q88 4 "Not at all satisfied", modify
      label values seniority Q17

      Comment


      • #4
        I didn't understand why non-significant interaction terms would be necessarily a problem.

        You can check for yourself, by doing the modeling, then comparing models with and without the interaction terms.

        Probably, adding the interaction terms won't improve the model, for they are non-significant.

        That being said, you didn't mention the sample size. Power issues may produce such results.
        Best regards,

        Marcos

        Comment


        • #5
          Thank you Marcos for your time and help.
          Best regards,
          Lourdes

          Comment

          Working...
          X