Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Problem (omitted because of collinearity

    Code:
    probit checking_account lending_interest i.size c.firm_age i.Legal_Status i.sector i.gender i.ownership c.log_RGDP c.Institution c.Muslim i.Legalor* i.Year, vce(cluster country)
    Code:
     
    (1) (2) (3) (4) (5) (6) (7) (8)
    VARIABLES Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8
    lending_interest 0.0153*** 0.0146*** 0.0137** 0.00685 0.00609 0.00590 0.00546 0.00608
    (0.00539) (0.00554) (0.00609) (0.00604) (0.00535) (0.00532) (0.00515) (0.00503)
    Bureaucratic_comp 0.00277*** 0.00277*** 0.00331*** 0.00238*** 0.00199** 0.00143* 0.00106
    (0.000696) (0.000797) (0.000915) (0.000884) (0.000861) (0.000827) (0.000854)
    Regulation 0.00181* 0.00177* 0.00138 0.000987 0.000943 0.00111
    (0.000944) (0.00105) (0.000981) (0.000957) (0.000952) (0.000981)
    COR 0.00897*** 0.00578** 0.00452* 0.00291 0.00253
    (0.00257) (0.00241) (0.00234) (0.00222) (0.00218)
    1.Tax_rates_Constraint 0.605*** 0.426*** 0.377*** 0.346***
    (0.0340) (0.0320) (0.0328) (0.0325)
    1.Tax_admin_Constraint 0.326*** 0.213*** 0.179***
    (0.0277) (0.0345) (0.0358)
    1.Permit_Constraint 0.444*** 0.414***
    (0.0396) (0.0388)
    1.Instability_Constraint 0.255***
    (0.0379)
    2.size -0.0991*** -0.102*** -0.0994*** -0.115*** -0.124*** -0.130*** -0.141*** -0.145***
    (0.0198) (0.0197) (0.0206) (0.0232) (0.0242) (0.0250) (0.0250) (0.0254)
    3.size -0.250*** -0.257*** -0.272*** -0.342*** -0.335*** -0.340*** -0.355*** -0.361***
    (0.0275) (0.0274) (0.0349) (0.0377) (0.0433) (0.0433) (0.0421) (0.0438)
    firm_age -0.00135* -0.00142** -0.000734 -0.000731 -0.00145* -0.00170** -0.00159** -0.00199***
    (0.000702) (0.000709) (0.000650) (0.000778) (0.000766) (0.000737) (0.000743) (0.000740)
    2.Legal_Status 0.0118 0.0282 0.00145 0.0240 -0.00788 -0.0145 -0.00619 -0.0160
    (0.0590) (0.0602) (0.0418) (0.0492) (0.0445) (0.0451) (0.0447) (0.0432)
    3.Legal_Status 0.0439 0.0575 0.0484 0.0762 0.0923** 0.0979** 0.107** 0.114**
    (0.0650) (0.0653) (0.0483) (0.0537) (0.0447) (0.0453) (0.0448) (0.0445)
    4.Legal_Status 0.118 0.128* 0.116* 0.120* 0.122** 0.126** 0.119** 0.121**
    (0.0753) (0.0773) (0.0613) (0.0657) (0.0599) (0.0594) (0.0579) (0.0582)
    5.Legal_Status -0.0165 0.00579 -0.0310 0.0129 0.0276 0.0300 0.0450 0.0629
    (0.0755) (0.0759) (0.0659) (0.0661) (0.0596) (0.0616) (0.0612) (0.0616)
    6.Legal_Status 0.0263 0.0181 -0.0733 -0.0850 -0.0658 -0.0466 -0.0611 -0.0616
    (0.0842) (0.0857) (0.0639) (0.0877) (0.0788) (0.0745) (0.0800) (0.0790)
    1.sector 0.0720*** 0.0731*** 0.0824*** 0.0753*** 0.0755*** 0.0753*** 0.0758*** 0.0774***
    (0.0245) (0.0240) (0.0269) (0.0269) (0.0258) (0.0252) (0.0257) (0.0257)
    1.gender -0.00557 -0.00889 0.0138 0.0113 0.0194 0.0233 0.0285 0.0271
    (0.0252) (0.0253) (0.0228) (0.0221) (0.0212) (0.0199) (0.0205) (0.0209)
    1.ownership -0.209*** -0.204*** -0.213*** -0.188*** -0.166*** -0.171*** -0.173*** -0.165***
    (0.0319) (0.0317) (0.0318) (0.0349) (0.0348) (0.0352) (0.0356) (0.0364)
    2.ownership -0.189** -0.198** -0.124 -0.0997 -0.0582 -0.0131 0.00148 0.0239
    (0.0759) (0.0856) (0.0810) (0.100) (0.0947) (0.0856) (0.0898) (0.0924)
    log_RGDP -0.0403 -0.0507 -0.0470 -0.0778* -0.0789** -0.0730** -0.0847** -0.101***
    (0.0466) (0.0456) (0.0422) (0.0434) (0.0362) (0.0358) (0.0348) (0.0352)
    Institutions 0.00177 0.00177 0.00168 0.00116 0.00109 0.00148 0.00232 0.00451**
    (0.00235) (0.00224) (0.00205) (0.00197) (0.00168) (0.00168) (0.00166) (0.00176)
    Muslim 0.00227* 0.00230** 0.00196** 0.00247*** 0.00265*** 0.00265*** 0.00265*** 0.00244***
    (0.00116) (0.00111) (0.000919) (0.000952) (0.000865) (0.000854) (0.000839) (0.000898)
    1.Legalor_uk -0.0479 -0.0552 -0.0249 -0.0213 -0.0118 -0.0328 -0.0574 -0.0574
    (0.117) (0.114) (0.103) (0.107) (0.0929) (0.0946) (0.0909) (0.0957)
    1.Legalor_fr 0.0245 0.0165 0.0328 0.0295 0.0496 0.0175 -0.00193 -0.0242
    (0.114) (0.113) (0.111) (0.113) (0.0949) (0.0978) (0.0932) (0.0953)
    1.Legalor_ger -0.0947 -0.0996 -0.0821 -0.190 -0.126 -0.172* -0.172* -0.201**
    (0.132) (0.131) (0.116) (0.141) (0.101) (0.104) (0.101) (0.0995)
    0o.Legalor_Nor - - - - - - - -
    1o.Legalor_so - - - - - - - -
    2007.Year -0.160 -0.158 -0.165 -0.163 -0.153* -0.159* -0.165** -0.138
    (0.126) (0.125) (0.117) (0.114) (0.0829) (0.0846) (0.0826) (0.0942)
    2008.Year 0.0475 0.0180 0.0373 0.0152 -0.0435 -0.0581 -0.0667 -0.0780
    (0.167) (0.161) (0.158) (0.176) (0.167) (0.150) (0.141) (0.144)
    2009.Year -0.135 -0.134 -0.162 -0.377*** -0.288** -0.295** -0.287** -0.271**
    (0.129) (0.128) (0.140) (0.142) (0.134) (0.133) (0.129) (0.126)
    2010.Year 0.132* 0.143* 0.146** 0.192** 0.167** 0.133* 0.119* 0.118
    (0.0724) (0.0740) (0.0713) (0.0769) (0.0718) (0.0721) (0.0708) (0.0750)
    2011.Year 0.130 0.104 -0.00641 0.0675 0.0296 -0.00857 -0.0122 0.0317
    (0.0878) (0.0892) (0.0930) (0.0979) (0.0786) (0.0823) (0.0751) (0.0823)
    2012.Year -0.236 -0.229 -0.251 -0.278 -0.277* -0.242 -0.189 -0.0994
    (0.215) (0.213) (0.203) (0.208) (0.151) (0.157) (0.153) (0.149)
    2013.Year -0.148 -0.151 -0.188* -0.187* -0.164 -0.168* -0.144 -0.154
    (0.106) (0.102) (0.106) (0.107) (0.100) (0.101) (0.0986) (0.106)
    2014.Year -0.288** -0.277** -0.295*** -0.349*** -0.333*** -0.352*** -0.338*** -0.318***
    (0.133) (0.126) (0.107) (0.110) (0.103) (0.104) (0.104) (0.106)
    2015.Year -0.441*** -0.458*** -0.553*** -0.592*** -0.488*** -0.486*** -0.494*** -0.451***
    (0.116) (0.0985) (0.101) (0.105) (0.0924) (0.0923) (0.0894) (0.100)
    2016.Year 0.105 0.0939 0.358* 0.237 0.212 0.198 0.241 0.241
    (0.321) (0.333) (0.188) (0.200) (0.193) (0.182) (0.176) (0.178)
    Constant 0.105 0.157 0.175 0.482 0.151 0.0983 0.116 0.0976
    (0.415) (0.415) (0.404) (0.411) (0.350) (0.344) (0.329) (0.327)
    Observations 88,751 82,964 47,675 32,230 32,097 31,848 31,346 31,054
    Robust standard errors in parentheses
    *** p<0.01, ** p<0.05, * p<0.1
    Hello Everyone,

    I am new to Stata, I have a problem of omitted variables (Legal origin Nordic and Legal origin Socialist) because of colinearity, How i can solve this problem?

    By the way, my research question, I study the impact of formal financial institutions on the access to finance

    Thanks

  • #2
    Salma:
    welcome to this forum.
    Unfortunately, there's nothing you can do to avoid omission due to colinearity, but to change the predictors in the right-hand side of your regression model.
    Kind regards,
    Carlo
    (Stata 19.0)

    Comment


    • #3
      Thanks a lot for your reply.
      I did a different code for 'Legal Origin' for example
      Code:
      encode Legal_Origin, gen(Leg_origin)
      I received
      Code:
      Legal_Origi    
      n    Freq.    Percent    Cum.
                  
      British    42,043    33.06    33.06
      French    56,821    44.68    77.74
      German    12,020    9.45    87.19
      Nordic    600    0.47    87.66
      Socialist    15,694    12.34    100.00
                  
      Total    127,178    100.00
      Finally, when I ran the probit model, I do not receive an omitted variable. Can you help me with the explanation, what is the difference between the two codes for Legal Origin?

      Thank you in advance

      Comment


      • #4
        Salma:
        have you already checked that the -Legal_Origin- contain the same frequecies for each category?
        Kind regards,
        Carlo
        (Stata 19.0)

        Comment


        • #5
          regarding your question, they have different frequencies.

          For instance, as shown in the table above 'British: 42043' 'French:56821' 'German:12020' 'Nordic: 600' and finally 'Socialist:15694'
          So, I do not know if I can use which code for legal origin?

          Comment


          • #6
            Salma:
            at a very first glance it woud seem that you first -Legal_Status- predictors has 6 levels, whereas -Legal_Origin- only five.
            Why it seems so, I don't know.
            As an aside, I warmly recommend you this article, that focuses on -encode- pitfalls (and how to avoid them): https://www.stata-journal.com/sjpdf....iclenum=dm0057
            Kind regards,
            Carlo
            (Stata 19.0)

            Comment

            Working...
            X