Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Model with Independent lagged variables: FE, RE or POLS?

    Dear all,

    i am running a regression using panel data and looking at the effect of company financial data and characteristics on tax adjustments. The tax adjustments paid in period t are caused in periods before (t-1 oder t-2) and were found after tax audit. I don´t have many observations per group and i want to control for different company characteristics (dummy variables). The effects are primarily between the groups not within the time series. In my opinion the RE Model would be the logical consequence, but the hausman test rejects H0 so i can´t use RE.

    This is how my xtreg, fe regression looks like:

    Code:
    Code:
    xtreg LOG_STN l1.LOG_SALES l2.LOG_SALES l1.PROV l2.PROV l1.LEV l2.LEV l1.DEBT l2.DEBT l1.ROA l2.ROA l1.IVG_intense l2.IVG_intense l1.KAP_intense l2.KAP_intense l1.VOR_intense l
    > 2.VOR_intense FamUN AUSL_KSTR y2012 y2013 y2014 y2015 y2016 y2017 bw bay hes sac nrw c f g m n, fe
    note: FamUN omitted because of collinearity
    note: AUSL_KSTR omitted because of collinearity
    note: bw omitted because of collinearity
    note: bay omitted because of collinearity
    note: hes omitted because of collinearity
    note: sac omitted because of collinearity
    note: nrw omitted because of collinearity
    note: c omitted because of collinearity
    note: f omitted because of collinearity
    note: g omitted because of collinearity
    note: m omitted because of collinearity
    note: n omitted because of collinearity
    
    Fixed-effects (within) regression               Number of obs     =      3,518
    Group variable: idc                             Number of groups  =      2,189
    
    R-sq:                                           Obs per group:
         within  = 0.0216                                         min =          1
         between = 0.0001                                         avg =        1.6
         overall = 0.0002                                         max =          6
    
                                                    F(22,1307)        =       1.31
    corr(u_i, Xb)  = -0.1703                        Prob > F          =     0.1501
    
    ------------------------------------------------------------------------------
         LOG_STN |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
       LOG_SALES |
             L1. |   .8047563   .3752725     2.14   0.032     .0685539    1.540959
             L2. |  -.7372711   .3916178    -1.88   0.060    -1.505539    .0309972
                 |
            PROV |
             L1. |  -.2168305    1.86602    -0.12   0.908    -3.877553    3.443892
             L2. |   2.515237   1.810256     1.39   0.165    -1.036087    6.066562
                 |
             LEV |
             L1. |   .0663668   .0781916     0.85   0.396     -.087028    .2197616
             L2. |   -.066027   .0374569    -1.76   0.078    -.1395093    .0074553
                 |
            DEBT |
             L1. |  -.0293448   .6116295    -0.05   0.962    -1.229228    1.170538
             L2. |   .3254192   .5211656     0.62   0.532    -.6969934    1.347832
                 |
             ROA |
             L1. |  -.6775415   1.158015    -0.59   0.559    -2.949314    1.594231
             L2. |  -2.684723   1.101758    -2.44   0.015     -4.84613   -.5233155
                 |
     IVG_intense |
             L1. |   1.390094    2.55196     0.54   0.586    -3.616293     6.39648
             L2. |   -1.74212   2.698345    -0.65   0.519     -7.03568    3.551441
                 |
     KAP_intense |
             L1. |  -.0716247   1.594696    -0.04   0.964    -3.200068    3.056818
             L2. |  -.6143406   1.284293    -0.48   0.632    -3.133843    1.905161
                 |
     VOR_intense |
             L1. |   1.185455   .9368948     1.27   0.206     -.652527    3.023437
             L2. |    .800335   .8815385     0.91   0.364    -.9290501     2.52972
                 |
           FamUN |          0  (omitted)
       AUSL_KSTR |          0  (omitted)
           y2012 |  -.1148903   .2005894    -0.57   0.567    -.5084027    .2786221
           y2013 |  -.2193175   .2076353    -1.06   0.291    -.6266523    .1880173
           y2014 |  -.3174528   .2204653    -1.44   0.150    -.7499573    .1150517
           y2015 |  -.2075198    .233365    -0.89   0.374    -.6653308    .2502912
           y2016 |  -.3926721   .2435855    -1.61   0.107    -.8705334    .0851892
           y2017 |  -.2898164   .3278856    -0.88   0.377    -.9330559    .3534232
              bw |          0  (omitted)
             bay |          0  (omitted)
             hes |          0  (omitted)
             sac |          0  (omitted)
             nrw |          0  (omitted)
               c |          0  (omitted)
               f |          0  (omitted)
               g |          0  (omitted)
               m |          0  (omitted)
               n |          0  (omitted)
           _cons |   1.903193    4.79805     0.40   0.692    -7.509529    11.31591
    -------------+----------------------------------------------------------------
         sigma_u |  3.7078212
         sigma_e |  2.0251375
             rho |  .77023059   (fraction of variance due to u_i)
    ------------------------------------------------------------------------------
    F test that all u_i=0: F(2188, 1307) = 2.12                  Prob > F = 0.0000
    Hausman test:
    Code:
     Test:  Ho:  difference in coefficients not systematic
    
                     chi2(22) = (b-B)'[(V_b-V_B)^(-1)](b-B)
                              =       76.77
                    Prob>chi2 =      0.0000
    xtreg, re:
    Code:
     xtreg LOG_STN l1.LOG_SALES l2.LOG_SALES l1.PROV l2.PROV l1.LEV l2.LEV l1.DEBT l2.DEBT l1.ROA l2.ROA l1.IVG_intense l2.IVG_intense l1.KAP_intense l2.KAP_intense l1.VOR_intense l
    > 2.VOR_intense FamUN AUSL_KSTR y2012 y2013 y2014 y2015 y2016 y2017 bw bay hes sac nrw c f g m n, re
    
    Random-effects GLS regression                   Number of obs     =      3,518
    Group variable: idc                             Number of groups  =      2,189
    
    R-sq:                                           Obs per group:
         within  = 0.0006                                         min =          1
         between = 0.5251                                         avg =        1.6
         overall = 0.5054                                         max =          6
    
                                                    Wald chi2(34)     =    2512.84
    corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.0000
    
    ------------------------------------------------------------------------------
         LOG_STN |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
       LOG_SALES |
             L1. |    .965822   .1913759     5.05   0.000     .5907322    1.340912
             L2. |   .1194994   .1908272     0.63   0.531    -.2545151    .4935139
                 |
            PROV |
             L1. |   1.435207   1.127386     1.27   0.203    -.7744284    3.644843
             L2. |   -.734266   1.142288    -0.64   0.520    -2.973109    1.504578
                 |
             LEV |
             L1. |  -.0132113    .027322    -0.48   0.629    -.0667613    .0403388
             L2. |   .0014444   .0193577     0.07   0.941    -.0364961    .0393849
                 |
            DEBT |
             L1. |  -.1789497   .3023988    -0.59   0.554    -.7716405    .4137411
             L2. |   -.436075   .2741722    -1.59   0.112    -.9734427    .1012927
                 |
             ROA |
             L1. |  -.1335986   .6398764    -0.21   0.835    -1.387733    1.120536
             L2. |   -1.52944   .6135618    -2.49   0.013    -2.731998   -.3268806
                 |
     IVG_intense |
             L1. |   .0267801   1.624745     0.02   0.987    -3.157661    3.211221
             L2. |   1.663602   1.592992     1.04   0.296    -1.458605    4.785808
                 |
     KAP_intense |
             L1. |   .2447735   .8247597     0.30   0.767    -1.371726    1.861273
             L2. |   1.489765   .7936084     1.88   0.060    -.0656792    3.045208
                 |
     VOR_intense |
             L1. |  -.3348842   .4761082    -0.70   0.482    -1.268039    .5982708
             L2. |  -.3350098    .460146    -0.73   0.467    -1.236879    .5668598
                 |
           FamUN |  -.5909862   .1461903    -4.04   0.000    -.8775138   -.3044586
       AUSL_KSTR |   .4322607     .13506     3.20   0.001     .1675479    .6969735
           y2012 |  -.0770948   .1694286    -0.46   0.649    -.4091688    .2549791
           y2013 |  -.3837821   .1674422    -2.29   0.022    -.7119628   -.0556015
           y2014 |  -.1691641   .1717899    -0.98   0.325     -.505866    .1675379
           y2015 |   .1384244   .1810782     0.76   0.445    -.2164823    .4933311
           y2016 |    .068587   .1829719     0.37   0.708    -.2900313    .4272053
           y2017 |  -.0408278   .2510171    -0.16   0.871    -.5328124    .4511567
              bw |  -.1638173   .1698556    -0.96   0.335    -.4967282    .1690935
             bay |  -.0336689    .161638    -0.21   0.835    -.3504736    .2831357
             hes |   .1426045   .2052941     0.69   0.487    -.2597646    .5449737
             sac |   .2499873   .2373464     1.05   0.292    -.2152031    .7151778
             nrw |  -.0404006   .1467679    -0.28   0.783    -.3280604    .2472591
               c |  -.5049047   .1654168    -3.05   0.002    -.8291157   -.1806938
               f |  -1.284322   .2200182    -5.84   0.000     -1.71555   -.8530946
               g |  -.8524794   .1796878    -4.74   0.000    -1.204661   -.5002978
               m |  -.2227419   .1809266    -1.23   0.218    -.5773516    .1318678
               n |  -.1955437   .3183816    -0.61   0.539    -.8195601    .4284727
           _cons |  -8.119061   .4488191   -18.09   0.000     -8.99873   -7.239392
    -------------+----------------------------------------------------------------
         sigma_u |  1.7691576
         sigma_e |  2.0251375
             rho |  .43284126   (fraction of variance due to u_i)
    ------------------------------------------------------------------------------
    Here xttest0 after xtreg, re:
    Code:
    Breusch and Pagan Lagrangian multiplier test for random effects
    
            LOG_STN[idc,t] = Xb + u[idc] + e[idc,t]
    
            Estimated results:
                             |       Var     sd = sqrt(Var)
                    ---------+-----------------------------
                     LOG_STN |   13.63771       3.692926
                           e |   4.101182       2.025137
                           u |   3.129919       1.769158
    
            Test:   Var(u) = 0
                                 chibar2(01) =    89.51
                              Prob > chibar2 =   0.0000
    When my understanding for this tests is correct, i should use FE estimator, although the R-sq is very bad?

  • #2
    And is this regression structure with two time periods for each variable possible? Can i ignore multicollinearity between for example Sales(t-1) and Sales(t-2)?

    Comment


    • #3
      Joern:
      according to -hausman- outcome, you should go -fe-.
      The results of -xttest0- does not necessarily implies that the right specification is -re-; in fact, this test should be followed by -hausman- to decide whether -fe- or -re- is better for your data.
      However, your problem seems more trivial: for both your models most of your coefficients do not show any evidence of an effect on the regressand.
      You may want to consider a more parsimonious model, that gives a fair and true view of the data generating process.
      Eventually, you may want to take a look at -estat vce, corr- after -xtreg- to investigate possible quasi-extreme multicollinearity issues among predictors.
      Kind regards,
      Carlo
      (Stata 19.0)

      Comment


      • #4
        Hello Carlo,
        thank you for your advice.
        I did -estat vce, corr- after xtreg, fe and saw values from 0.5 to 0.8 between the year dummies. After omitting these the results for the fixed effects regression changed totally. I thought the year dummies are always helpful to control for time-effects. Recently i have very high values between the Lag1 and the Lag2 of each variable. I looked at http://statisticalhorizons.com/multicollinearity but i´m not sure if i can ignore them.

        here the results for -estat vce, vorr- after -xtreg, fe- and ommiting the year dummies:
        Code:
        Correlation matrix of coefficients of xtreg model
        
                     |        L.       L2.        L.       L2.        L.       L2.        L.       L2.        L.       L2.        L.       L2.        L.       L2.        L.       L2.
                e(V) | LOG_SA~S  LOG_SA~S      PROV      PROV       LEV       LEV      DEBT      DEBT       ROA       ROA  IVG_in~e  IVG_in~e  KAP_in~e  KAP_in~e  VOR_in~e  VOR_in~e 
        -------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------
         L.LOG_SALES |   1.0000                                                                                                                                                       
        L2.LOG_SALES |  -0.9855    1.0000                                                                                                                                             
              L.PROV |  -0.0704    0.0635    1.0000                                                                                                                                   
             L2.PROV |   0.0645   -0.0654   -0.9386    1.0000                                                                                                                         
               L.LEV |   0.0453   -0.0524   -0.1013    0.1010    1.0000                                                                                                               
              L2.LEV |  -0.0470    0.0614   -0.0032   -0.0218   -0.4307    1.0000                                                                                                     
              L.DEBT |  -0.0323    0.0285    0.3462   -0.3108   -0.2584    0.0522    1.0000                                                                                           
             L2.DEBT |  -0.0277    0.0362   -0.2545    0.3040    0.0325   -0.1526   -0.6724    1.0000                                                                                 
               L.ROA |  -0.2565    0.2556   -0.0392    0.0372    0.0775   -0.0098    0.0257    0.0432    1.0000                                                                       
              L2.ROA |   0.1256   -0.1189    0.0817   -0.0886   -0.0222    0.0688    0.0706   -0.0857   -0.6536    1.0000                                                             
        L.IVG_inte~e |  -0.1428    0.1354   -0.0741    0.0979    0.0325   -0.0194   -0.3372    0.3119   -0.0107    0.0377    1.0000                                                   
        L2.IVG_int~e |   0.1240   -0.1234    0.0901   -0.0966   -0.0538    0.0245    0.3432   -0.3620    0.0154   -0.0178   -0.9320    1.0000                                         
        L.KAP_inte~e |  -0.0519    0.0446    0.0337   -0.0255    0.0210   -0.0268   -0.1619    0.1997   -0.1168    0.0583   -0.0132    0.0090    1.0000                               
        L2.KAP_int~e |   0.0540   -0.0528   -0.0540    0.0525   -0.0141    0.0566    0.1482   -0.2140    0.0901   -0.0463    0.0651   -0.0320   -0.8873    1.0000                     
        L.VOR_inte~e |   0.1744   -0.1618   -0.0526    0.0664    0.0797    0.0127   -0.5767    0.5246   -0.0953    0.0535    0.1232   -0.1092    0.0886   -0.0539    1.0000           
        L2.VOR_int~e |  -0.1780    0.1789    0.0860   -0.0938   -0.0379    0.0565    0.5175   -0.6347    0.0951   -0.0490   -0.0777    0.1083   -0.1103    0.1392   -0.7805    1.0000 
               FamUN |  -0.0104    0.0459    0.0297   -0.0033   -0.0144    0.0031   -0.0118   -0.0461   -0.0283    0.0010    0.0201   -0.0012   -0.0193    0.0116   -0.0335    0.0252 
           AUSL_KSTR |   0.0011   -0.0588    0.0529   -0.0426    0.0409    0.0111    0.0568   -0.0560   -0.0036   -0.0279   -0.1293    0.0339    0.0442   -0.0746   -0.0309   -0.0073 
                  bw |   0.0346   -0.0249   -0.0668    0.0382    0.0136   -0.0392   -0.0234    0.0323    0.0483   -0.0663    0.0324   -0.0488   -0.0220   -0.0051   -0.0209   -0.0260 
                 bay |  -0.0463    0.0396   -0.0276   -0.0183    0.0303   -0.0439   -0.0426    0.0705    0.0233   -0.0249    0.0181   -0.0656    0.0147   -0.0143    0.0437   -0.0263 
                 hes |  -0.0148    0.0101   -0.0643    0.0213    0.0028   -0.0276   -0.0286    0.0345    0.0459   -0.0027    0.0154   -0.0303   -0.0468    0.0374    0.0070   -0.0296 
                 sac |   0.0118    0.0009    0.0426   -0.0083    0.0195   -0.0636    0.0465    0.0205    0.0126    0.0259    0.0047    0.0069   -0.0027   -0.0020   -0.0179    0.0357 
                 nrw |  -0.0192    0.0182    0.0103   -0.0674   -0.0295   -0.0319    0.0257   -0.0063    0.0503   -0.0076    0.0189   -0.0467   -0.0346    0.0114   -0.0384    0.0276 
                   c |  -0.0281    0.0236   -0.0115   -0.0220   -0.0244   -0.0212    0.0670    0.0361    0.0009    0.0122   -0.0337    0.0342    0.0318   -0.0548   -0.1188   -0.1072 
                   f |   0.0464   -0.0188   -0.0614    0.0138    0.0289   -0.0093   -0.0824   -0.0081   -0.0442    0.0192   -0.0287    0.0227    0.0334   -0.0297   -0.0664   -0.0820 
                   g |  -0.0291    0.0200   -0.0270    0.0247    0.0402   -0.0135    0.0098    0.0063    0.0021   -0.0035   -0.0412    0.0393    0.0579   -0.0620   -0.1646   -0.1060 
                   m |   0.0025   -0.0398   -0.0478    0.0284    0.0316   -0.0324   -0.0119    0.0091   -0.0170    0.0482   -0.0038   -0.0338    0.0047    0.0189   -0.0919   -0.0645 
                   n |   0.0021    0.0092   -0.0403    0.0281    0.0206   -0.0289   -0.0326   -0.0311   -0.0162    0.0103   -0.0110    0.0037   -0.0491    0.0587    0.0036    0.0249 
               _cons |  -0.0345   -0.1177   -0.0294   -0.0021    0.0608   -0.0639   -0.1277   -0.1289   -0.0675   -0.0752    0.0324   -0.0058    0.0176   -0.0164   -0.0549   -0.0082 
        
                     |                                                                                                                                  
                e(V) |    FamUN  AUSL_K~R        bw       bay       hes       sac       nrw         c         f         g         m         n     _cons 
        -------------+----------------------------------------------------------------------------------------------------------------------------------
               FamUN |   1.0000                                                                                                                         
           AUSL_KSTR |   0.0838    1.0000                                                                                                               
                  bw |   0.0111   -0.1671    1.0000                                                                                                     
                 bay |  -0.0323   -0.0032    0.3048    1.0000                                                                                           
                 hes |  -0.0469   -0.1833    0.2829    0.2779    1.0000                                                                                 
                 sac |   0.0297    0.0014    0.1891    0.1880    0.1533    1.0000                                                                       
                 nrw |   0.0255   -0.0775    0.3681    0.3640    0.3288    0.2239    1.0000                                                             
                   c |  -0.1245   -0.2921   -0.0020   -0.0340    0.0561   -0.0127   -0.0133    1.0000                                                   
                   f |  -0.1603   -0.0814    0.0817   -0.0333    0.0491   -0.0252   -0.0108    0.3604    1.0000                                         
                   g |  -0.1519   -0.0979    0.0147   -0.1055   -0.0168   -0.0511   -0.0838    0.5368    0.3876    1.0000                               
                   m |  -0.1492   -0.1127   -0.0258   -0.0330    0.0553   -0.0052   -0.0478    0.5834    0.3266    0.5161    1.0000                     
                   n |  -0.0796   -0.0751   -0.0095   -0.0311   -0.0361   -0.0248   -0.0490    0.2123    0.1722    0.1963    0.2303    1.0000           
               _cons |  -0.1973    0.2835   -0.1208   -0.0466   -0.0409   -0.1897   -0.0840   -0.1092   -0.1790   -0.0495    0.0703   -0.0995    1.0000 
        
        .

        Comment


        • #5
          Joern:
          yoo may want to test whether your year dummies are jointly significant:
          Code:
          test y*
          Last edited by Carlo Lazzaro; 04 Feb 2019, 04:49.
          Kind regards,
          Carlo
          (Stata 19.0)

          Comment


          • #6
            Carlo:
            Thank you, that helped a lot. The year dummies are jointly not significant:

            Code:
            test y2012 y2013 y2014 y2015 y2016 y2017
            
             ( 1)  y2012 = 0
             ( 2)  y2013 = 0
             ( 3)  y2014 = 0
             ( 4)  y2015 = 0
             ( 5)  y2016 = 0
             ( 6)  y2017 = 0
            
                   F(  6,  2188) =    0.71
                        Prob > F =    0.6426
            Regarding the lagged variables: There is for exapmle a value of 0.985 between l1.LOG_SALES and l2.LOG_SALES, similar for l1./l2.PROV and so on. Does it mean i can´t take both periods as explanatory variable or is this a special case where i can ignore this values?

            Comment


            • #7
              Joern:
              you can safely omit -y*- from your set of predictors if this improves your model specification.
              As far as your second question is concerned, it is not surprising to detect such a high correlation when lag is one year apart. If I were you, I would rethink my specification considering no lags altogehter (unless the literature in your research field proposes a different approach).
              Kind regards,
              Carlo
              (Stata 19.0)

              Comment


              • #8
                Carlo:
                Thank you for your quick response!

                Comment

                Working...
                X