Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Why do i have large z test statistics when i ran translog model

    First i ran frontier model and then i did translog method here i have obtained large wald chisquare and large z test statistics my lnv2sig2v is not significant is it a problem what should i do?


    Attached Files

  • #2
    You'll increase your chances of a useful answer by following the FAQ on asking questions - provide Stata code in code delimiters, readable Stata output, and sample data using dataex. Also, many of us will not open attached files.

    We don't even know exactly what estimator and models you ran and how you did the "translog method".

    Comment


    • #3
      Dear sir,

      Im estimating the production function. first i ran simple regression for OLS then i ran stochastic frontier for my cross sectional data. Finally i did the translog method. In my translog method i assumed the error is half normally distributed but with my data i cant run with the constant because im getting iteration error. therefore i ran with exponential distribution but here i cant estimate the technical inefficiency term im getting iteration error. May i know what i should do. for my cobb douglas production function i didn't get any error. Below is what i obtained for cobb douglas production function technical efficiency model.
      Code:
      Stoc. frontier normal/half-normal model         Number of obs     =         82                                                 Wald chi2(3)      =   30330.19 Log likelihood = -3.5677263                     Prob > chi2       =     0.0000  ------------------------------------------------------------------------------          lny |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------        lnlab |   1.273875   .0936794    13.60   0.000     1.090267    1.457483    lnorganic |   .2661321   .0434148     6.13   0.000     .1810405    .3512236       lnland |   .0746134   .0456823     1.63   0.102    -.0149223    .1641491 -------------+----------------------------------------------------------------     /lnsig2v |  -2.750859   .1561738   -17.61   0.000    -3.056954   -2.444765     /lnsig2u |  -41.74448   18349.16    -0.00   0.998    -36005.44    35921.96 -------------+----------------------------------------------------------------      sigma_v |    .252731    .019735                      .2168657    .2945277      sigma_u |   8.62e-10   7.90e-06                             0           .       sigma2 |   .0638729   .0099753                      .0443218    .0834241       lambda |   3.41e-09    .019735                     -.0386798    .0386798 ------------------------------------------------------------------------------ LR test of sigma_u=0: chibar2(01) = 0.00               Prob >= chibar2 = 1.000
      Code:
      Stoc. frontier normal/half-normal model         Number of obs     =         82
                                                      Wald chi2(3)      =     923.18
      Log likelihood =  43.823512                     Prob > chi2       =     0.0000
      
      --------------------------------------------------------------------------------------
                       lny |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
      ---------------------+----------------------------------------------------------------
      lny                  |
                     lnlab |   .8047512   .0823812     9.77   0.000     .6432869    .9662154
                 lnorganic |   .2251354   .0240381     9.37   0.000     .1780216    .2722493
                    lnland |   .2027933   .0287243     7.06   0.000     .1464946    .2590919
                     _cons |   1.725193   .1749682     9.86   0.000     1.382262    2.068124
      ---------------------+----------------------------------------------------------------
      lnsig2v              |
                     _cons |   -5.07972   .3798877   -13.37   0.000    -5.824287   -4.335154
      ---------------------+----------------------------------------------------------------
      lnsig2u              |
                       age |   .0531842   .0312639     1.70   0.089    -.0080919    .1144602
                experience |  -.0393181   .0240587    -1.63   0.102    -.0864723    .0078362
                    hhsize |  -.2061523   .2096913    -0.98   0.326    -.6171396    .2048351
                 livestock |    .944724   .4866764     1.94   0.052    -.0091442    1.898592
                occupation |    .664641   .5426226     1.22   0.221    -.3988797    1.728162
                    gender |  -.9024016    .520934    -1.73   0.083    -1.923413    .1186101
                        vp |   .5833345   .7466759     0.78   0.435    -.8801234    2.046792
                        sd |  -1.025112   1.305347    -0.79   0.432    -3.583546    1.533322
      durationoforganictea |  -.1521679   .0726073    -2.10   0.036    -.2944756   -.0098602
                othercrops |    .948397   .5279737     1.80   0.072    -.0864123    1.983206
         education_dummy_1 |  -10.93334   10.95522    -1.00   0.318    -32.40518     10.5385
         education_dummy_2 |  -4.809491   2.663507    -1.81   0.071    -10.02987     .410886
         education_dummy_3 |  -4.606307   2.669673    -1.73   0.084    -9.838769    .6261563
         education_dummy_4 |  -2.552731   2.570144    -0.99   0.321     -7.59012    2.484658
         education_dummy_5 |  -3.715075   2.630043    -1.41   0.158    -8.869864    1.439713
         education_dummy_6 |  -5.276297   2.328762    -2.27   0.023    -9.840587   -.7120066
         education_dummy_7 |  -7.075948    4.36056    -1.62   0.105    -15.62249    1.470592
         education_dummy_8 |  -.0882475   2.679457    -0.03   0.974    -5.339886    5.163391
                  training |   .0993385   .8684734     0.11   0.909    -1.602838    1.801515
      ---------------------+----------------------------------------------------------------
                   sigma_v |   .0788774   .0149823                      .0543591    .1144546
      --------------------------------------------------------------------------------------
      For translpg production function

      Code:
      Stoc. frontier normal/half-normal model         Number of obs     =         82
                                                      Wald chi2(9)      =   1.55e+12
      Log likelihood =  25.822511                     Prob > chi2       =     0.0000
      
      ------------------------------------------------------------------------------
               lny |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
      -------------+----------------------------------------------------------------
              lab2 |  -.0551643   .0000434 -1271.57   0.000    -.0552493   -.0550793
             land2 |   .0569984   7.00e-06  8137.36   0.000     .0569847    .0570121
              org2 |   .0687043   4.92e-06  1.4e+04   0.000     .0686946    .0687139
           labland |  -.0581108   .0000105 -5552.95   0.000    -.0581313   -.0580903
            laborg |  -.2283966   .0000281 -8129.83   0.000    -.2284517   -.2283416
           landorg |  -.1388188   4.65e-06 -3.0e+04   0.000    -.1388279   -.1388097
             lnlab |   2.431192    .000091  2.7e+04   0.000     2.431014     2.43137
         lnorganic |   .0649848    .000047  1382.67   0.000     .0648926    .0650769
            lnland |   1.095407   .0000267  4.1e+04   0.000     1.095355    1.095459
      -------------+----------------------------------------------------------------
          /lnsig2v |  -38.37038   393.1166    -0.10   0.922    -808.8648    732.1241
          /lnsig2u |    -2.0814   .1561738   -13.33   0.000    -2.387495   -1.775305
      -------------+----------------------------------------------------------------
           sigma_v |   4.66e-09   9.15e-07                      2.3e-176    9.5e+158
           sigma_u |   .3532073   .0275809                      .3030833    .4116209
            sigma2 |   .1247554   .0194835                      .0865684    .1629424
            lambda |   7.59e+07   .0275809                      7.59e+07    7.59e+07
      ------------------------------------------------------------------------------
      LR test of sigma_u=0: chibar2(01) = 14.20              Prob >= chibar2 = 0.000
      But here i didnt get the output without supressing the constant term therefore i ran with the exponential distribution.

      Code:
      Stoc. frontier normal/exponential model         Number of obs     =         82
                                                      Wald chi2(9)      =     759.43
      Log likelihood =  19.813519                     Prob > chi2       =     0.0000
      
      ------------------------------------------------------------------------------
               lny |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
      -------------+----------------------------------------------------------------
             lnlab |  -.4966434   2.073942    -0.24   0.811    -4.561495    3.568208
         lnorganic |  -.4182501   .4761111    -0.88   0.380    -1.351411    .5149106
            lnland |   1.059041   .4903156     2.16   0.031     .0980403    2.020042
              lab2 |   .1430166   .5366499     0.27   0.790    -.9087978    1.194831
             land2 |   .0403039   .0615121     0.66   0.512    -.0802577    .1608654
              org2 |    .044659   .0381807     1.17   0.242    -.0301739    .1194918
           labland |  -.2700881   .1711921    -1.58   0.115    -.6056186    .0654423
            laborg |   .0758639   .2220813     0.34   0.733    -.3594076    .5111353
           landorg |  -.0324216   .0648854    -0.50   0.617    -.1595946    .0947513
             _cons |   5.197133   2.440417     2.13   0.033      .414003    9.980263
      -------------+----------------------------------------------------------------
          /lnsig2v |  -5.015822    .685764    -7.31   0.000    -6.359895   -3.671749
          /lnsig2u |  -3.130248   .3746372    -8.36   0.000    -3.864524   -2.395973
      -------------+----------------------------------------------------------------
           sigma_v |   .0814382   .0279237                      .0415878     .159474
           sigma_u |    .209062   .0391612                      .1448203    .3018013
            sigma2 |   .0503391    .013768                      .0233543    .0773239
            lambda |   2.567125   .0614051                      2.446774    2.687477
      ------------------------------------------------------------------------------
      LR test of sigma_u=0: chibar2(01) = 2.18               Prob >= chibar2 = 0.070
      .
      But with the exponential i cannot estimate the technical inefficiency model.

      May i know where i have gone wrong and what i should do?

      Thanks in advancce

      Comment

      Working...
      X