Hello,
is it okay to divide each individual's value of a variable by the mean of the sample and then use this transformed variable for a regression in a sample?
For example:
Would this cause any trouble?
The motivation would be to see what factors effect the price to lie above the sample average.
Thank you!
is it okay to divide each individual's value of a variable by the mean of the sample and then use this transformed variable for a regression in a sample?
For example:
Code:
sysuse auto, clear . reg price trunk weight displacement gear_ratio Source | SS df MS Number of obs = 74 -------------+---------------------------------- F(4, 69) = 8.54 Model | 210211246 4 52552811.6 Prob > F = 0.0000 Residual | 424854150 69 6157306.52 R-squared = 0.3310 -------------+---------------------------------- Adj R-squared = 0.2922 Total | 635065396 73 8699525.97 Root MSE = 2481.4 ------------------------------------------------------------------------------ price | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- trunk | -63.64507 91.74253 -0.69 0.490 -246.6664 119.3763 weight | 2.160798 .8998892 2.40 0.019 .3655685 3.956028 displacement | 10.36613 8.266774 1.25 0.214 -6.125634 26.85789 gear_ratio | 2192.778 1140.727 1.92 0.059 -82.91105 4468.466 _cons | -8139.774 4688.715 -1.74 0.087 -17493.5 1213.956 egen meanprice = mean(price) gen dividedprice = price/meanprice . reg dividedprice trunk weight displacement gear_ratio Source | SS df MS Number of obs = 74 -------------+---------------------------------- F(4, 69) = 8.54 Model | 5.53036265 4 1.38259066 Prob > F = 0.0000 Residual | 11.177316 69 .161990087 R-squared = 0.3310 -------------+---------------------------------- Adj R-squared = 0.2922 Total | 16.7076786 73 .22887231 Root MSE = .40248 ------------------------------------------------------------------------------ dividedprice | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- trunk | -.0103232 .0148806 -0.69 0.490 -.0400091 .0193627 weight | .0003505 .000146 2.40 0.019 .0000593 .0006417 displacement | .0016814 .0013409 1.25 0.214 -.0009936 .0043563 gear_ratio | .3556669 .1850251 1.92 0.059 -.0134481 .7247819 _cons | -1.320265 .760506 -1.74 0.087 -2.837433 .1969028 ------------------------------------------------------------------------------
The motivation would be to see what factors effect the price to lie above the sample average.
Thank you!
Comment