Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • #16
    Hi David,

    Thanks for your interest in develop my post. I grateful your comments.

    Here I attach dta file. Sorry I forgot mention that for this excercise crew class was droped in the book previosluy.

    I expected that my sex#class interactions were the results of the book posted previously.

    My do file to get tables:

    Code:
    use titanic, clear
    drop if class==4
    
    logit sur i.sex##i.class, nolog
    
    Logistic regression                               Number of obs   =       1316
                                                      LR chi2(5)      =     515.16
                                                      Prob > chi2     =     0.0000
    Log likelihood = -615.79775                       Pseudo R2       =     0.2949
    
    --------------------------------------------------------------------------------
          survived |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    ---------------+----------------------------------------------------------------
               sex |
              man  |  -4.206016   .5307502    -7.92   0.000    -5.246267   -3.165764
                   |
             class |
        2nd class  |  -1.594815   .5871695    -2.72   0.007    -2.745646   -.4439844
        3rd class  |  -3.726095    .526913    -7.07   0.000    -4.758825   -2.693365
                   |
         sex#class |
    man#2nd class  |   .4202889    .644876     0.65   0.515    -.8436449    1.684223
    man#3rd class  |   2.801977   .5621158     4.98   0.000      1.70025    3.903703
                   |
             _cons |   3.562466   .5070426     7.03   0.000      2.56868    4.556251
    --------------------------------------------------------------------------------
    
    
    logit sur i.sex##i.class, or nolog
    
    Logistic regression                               Number of obs   =       1316
                                                      LR chi2(5)      =     515.16
                                                      Prob > chi2     =     0.0000
    Log likelihood = -615.79775                       Pseudo R2       =     0.2949
    
    --------------------------------------------------------------------------------
          survived | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
    ---------------+----------------------------------------------------------------
               sex |
              man  |   .0149056   .0079112    -7.92   0.000     .0052671    .0421819
                   |
             class |
        2nd class  |    .202946   .1191637    -2.72   0.007     .0642068    .6414754
        3rd class  |   .0240867   .0126916    -7.07   0.000     .0085757    .0676529
                   |
         sex#class |
    man#2nd class  |   1.522401   .9817601     0.65   0.515     .4301398    5.388261
    man#3rd class  |   16.47718   9.262086     4.98   0.000     5.475316    49.58575
                   |
             _cons |      35.25   17.87325     7.03   0.000     13.04859    95.22579
    --------------------------------------------------------------------------------
    
    
    margins i.sex#i.class, expression(exp(predict(xb)))
    mat b = r(b)
    scalar base = b[1,1]
    margins i.sex#i.class,  expression((exp(predict(xb))/base))
    
    
    Predictive margins                                Number of obs   =       1316
    Model VCE    : OIM
    
    Expression   : (exp(predict(xb))/base)
    over         : sex class
    
    ----------------------------------------------------------------------------------
                     |            Delta-method
                     |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
           sex#class |
    women#1st class  |          1   .5070426     1.97   0.049     .0062148    1.993785
    women#2nd class  |    .202946   .0600925     3.38   0.001     .0851669    .3207251
    women#3rd class  |   .0240867   .0034525     6.98   0.000       .01732    .0308535
      man#1st class  |   .0149056    .002338     6.38   0.000     .0103232    .0194881
      man#2nd class  |   .0046053    .000993     4.64   0.000      .002659    .0065516
      man#3rd class  |   .0059158   .0006933     8.53   0.000      .004557    .0072745
    ----------------------------------------------------------------------------------
    
    
    
    
    logit sur b1.sex##i.class, or nolog
    
    
    Logistic regression                               Number of obs   =       1316
                                                      LR chi2(5)      =     515.16
                                                      Prob > chi2     =     0.0000
    Log likelihood = -615.79775                       Pseudo R2       =     0.2949
    
    ----------------------------------------------------------------------------------
            survived | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
                 sex |
              women  |   67.08871   35.60735     7.92   0.000     23.70686    189.8562
                     |
               class |
          2nd class  |   .3089652   .0823826    -4.40   0.000     .1832082    .5210439
          3rd class  |   .3968812   .0777086    -4.72   0.000     .2703939    .5825379
                     |
           sex#class |
    women#2nd class  |   .6568571   .4235914    -0.65   0.515     .1855886    2.324825
    women#3rd class  |     .06069   .0341148    -4.98   0.000     .0201671    .1826379
                     |
               _cons |   .5254237   .0824155    -4.10   0.000     .3863618    .7145378
    ----------------------------------------------------------------------------------
    Attached Files
    Last edited by Rodrigo Badilla; 23 Dec 2018, 06:23.

    Comment

    Working...
    X