Carlo:
- I tried adding i.county but as you can see 3 of my county dummies get dropped and I don't know why...
- If I run -xtgls- including -i.county.- and -i.date- is this model similar to a FE or RE model using -xtreg- and -i.date-?
- Additionally, how do I know if I should add -corr(ar1)- or -corr(psar1).-? Is there a way to test for this?
- I tried adding i.county but as you can see 3 of my county dummies get dropped and I don't know why...
Code:
. xtgls BEVsalesshare2 $varying $invariant i.county i.date, panels(hetero) corr(ar1) note: 16.county omitted because of collinearity note: 17.county omitted because of collinearity note: 18.county omitted because of collinearity note: 683.date omitted because of collinearity Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: heteroskedastic Correlation: common AR(1) coefficient for all panels (0.5292) Estimated covariances = 18 Number of obs = 1,296 Estimated autocorrelations = 1 Number of groups = 18 Estimated coefficients = 97 Time periods = 72 Wald chi2(96) = 4355.63 Prob > chi2 = 0.0000 ----------------------------------------------------------------------------------- BEVsalesshare2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------------+---------------------------------------------------------------- HOVkm | .0028243 .0008236 3.43 0.001 .00121 .0044386 NTPKM | 1.044655 .1909987 5.47 0.000 .6703044 1.419006 NFPKM | -.0000351 .0001897 -0.18 0.853 -.0004069 .0003368 lCHRoadKm | .0005701 .0001764 3.23 0.001 .0002244 .0009158 DGPrice | 1.099708 .4603553 2.39 0.017 .1974284 2.001988 EnergyPrice | -5.30e-06 .0000247 -0.21 0.830 -.0000537 .0000431 Arbeitslos | .0141821 .0031306 4.53 0.000 .0080463 .020318 AVKT | .0000247 .0000133 1.85 0.064 -1.41e-06 .0000508 Einkommen | 7.54e-07 3.72e-07 2.03 0.043 2.47e-08 1.48e-06 KuestenKm | -.0000429 .0000545 -0.79 0.431 -.0001498 .0000639 MuMShare | .000518 .0015161 0.34 0.733 -.0024536 .0034896 Temp | .0837146 .0260164 3.22 0.001 .0327234 .1347059 | county | Aust-Agder | .0140983 .0395476 0.36 0.721 -.0634135 .0916101 Buskerud | .1760323 .1127569 1.56 0.118 -.0449672 .3970318 Finnmark | .6700852 .4240885 1.58 0.114 -.161113 1.501283 Hedmark | .2401618 .1081435 2.22 0.026 .0282044 .4521192 Hordaland | .3127543 .3366671 0.93 0.353 -.3471011 .9726097 Møre og Romsdal | .2334566 .2968067 0.79 0.432 -.3482738 .815187 Nordland | 1.127708 1.181876 0.95 0.340 -1.188728 3.444143 Oppland | .282466 .1378638 2.05 0.040 .012258 .5526741 Oslo | -.2552385 .0953817 -2.68 0.007 -.4421831 -.0682939 Rogaland | -.0416909 .1000655 -0.42 0.677 -.2378157 .1544339 Sogn og Fjordane | .1905085 .1986498 0.96 0.338 -.198838 .5798549 Telemark | .1625748 .0780885 2.08 0.037 .0095242 .3156255 Troms | .4430188 .2773593 1.60 0.110 -.1005955 .9866332 Trøndelag | .6389879 .6288288 1.02 0.310 -.5934938 1.87147 Vest-Agder | 0 (omitted) Vestfold | 0 (omitted) Østfold | 0 (omitted) | date | 613 | -.2268591 .0927098 -2.45 0.014 -.4085669 -.0451513 614 | -.7043166 .2928438 -2.41 0.016 -1.27828 -.1303532 615 | -.9169508 .3799831 -2.41 0.016 -1.661704 -.1721976 616 | -.7581243 .3127974 -2.42 0.015 -1.371196 -.1450527 617 | -.7775726 .3195716 -2.43 0.015 -1.403921 -.1512237 618 | -.7862758 .3209708 -2.45 0.014 -1.415367 -.1571845 619 | -.6270099 .2564727 -2.44 0.014 -1.129687 -.1243327 620 | -.5250393 .2154985 -2.44 0.015 -.9474087 -.10267 621 | -.527263 .2138185 -2.47 0.014 -.9463397 -.1081864 622 | -.5390297 .2244603 -2.40 0.016 -.9789638 -.0990955 623 | -.503813 .2058997 -2.45 0.014 -.907369 -.1002571 624 | -1.004212 .4080189 -2.46 0.014 -1.803914 -.2045092 625 | -1.231644 .5068825 -2.43 0.015 -2.225115 -.2381725 626 | -1.415411 .5805272 -2.44 0.015 -2.553224 -.2775987 627 | -1.691162 .6953116 -2.43 0.015 -3.053948 -.3283766 628 | -1.156301 .471875 -2.45 0.014 -2.081159 -.2314433 629 | -.7842419 .3155263 -2.49 0.013 -1.402662 -.1658216 630 | -.7195585 .2878142 -2.50 0.012 -1.283664 -.155453 631 | -1.075721 .4389351 -2.45 0.014 -1.936018 -.2154239 632 | -1.390086 .5753903 -2.42 0.016 -2.517831 -.2623422 633 | -1.125633 .4606353 -2.44 0.015 -2.028462 -.2228048 634 | -.7319151 .2952611 -2.48 0.013 -1.310616 -.153214 635 | -.6073547 .2428528 -2.50 0.012 -1.083338 -.1313719 636 | -.7969532 .3108218 -2.56 0.010 -1.406153 -.1877537 637 | -1.018591 .4054745 -2.51 0.012 -1.813306 -.2238753 638 | -.9531387 .3779906 -2.52 0.012 -1.693987 -.2122908 639 | -.6762004 .2634221 -2.57 0.010 -1.192498 -.1599026 640 | -.7782525 .3045332 -2.56 0.011 -1.375127 -.1813784 641 | -.8192766 .3225763 -2.54 0.011 -1.451515 -.1870387 642 | -1.158212 .4628405 -2.50 0.012 -2.065363 -.2510613 643 | -1.279468 .5228701 -2.45 0.014 -2.304274 -.254661 644 | -1.348491 .5573389 -2.42 0.016 -2.440855 -.2561263 645 | -1.210291 .4978799 -2.43 0.015 -2.186117 -.2344639 646 | -.9993405 .4216226 -2.37 0.018 -1.825706 -.1729753 647 | -1.049846 .4448822 -2.36 0.018 -1.921799 -.1778926 648 | -1.287348 .5263805 -2.45 0.014 -2.319035 -.2556609 649 | -1.198639 .4966977 -2.41 0.016 -2.172149 -.2251295 650 | -.9450781 .4137151 -2.28 0.022 -1.755945 -.1342113 651 | -.8831236 .3606346 -2.45 0.014 -1.589954 -.1762928 652 | -1.17132 .4822397 -2.43 0.015 -2.116493 -.2261478 653 | -1.035592 .4314637 -2.40 0.016 -1.881246 -.1899391 654 | -1.336239 .5584903 -2.39 0.017 -2.43086 -.2416178 655 | -1.22443 .5195855 -2.36 0.018 -2.242799 -.2060608 656 | -1.062353 .4391422 -2.42 0.016 -1.923056 -.2016503 657 | -.7360511 .3011323 -2.44 0.015 -1.32626 -.1458426 658 | -.7580307 .3142412 -2.41 0.016 -1.373932 -.1421293 659 | -.1000405 .0416224 -2.40 0.016 -.1816189 -.0184621 660 | -.0430431 .0259607 -1.66 0.097 -.0939252 .0078389 661 | .2606484 .1016282 2.56 0.010 .0614607 .459836 662 | -.0926133 .0665767 -1.39 0.164 -.2231013 .0378747 663 | -.4448154 .1882968 -2.36 0.018 -.8138704 -.0757604 664 | .0602728 .0270416 2.23 0.026 .0072723 .1132733 665 | -.6300406 .2730304 -2.31 0.021 -1.16517 -.094911 666 | -.7713944 .3188387 -2.42 0.016 -1.396307 -.1464819 667 | .1157233 .0462074 2.50 0.012 .0251584 .2062881 668 | .2200686 .0892745 2.47 0.014 .0450938 .3950434 669 | .3255079 .1350015 2.41 0.016 .0609099 .590106 670 | .3304627 .1340658 2.46 0.014 .0676986 .5932268 671 | .6034622 .2515191 2.40 0.016 .1104939 1.096431 672 | .6775598 .2859752 2.37 0.018 .1170587 1.238061 673 | 1.231374 .5205094 2.37 0.018 .2111947 2.251554 674 | .4974773 .2005191 2.48 0.013 .1044672 .8904875 675 | .640154 .2762957 2.32 0.021 .0986243 1.181684 676 | .7074929 .3129547 2.26 0.024 .0941128 1.320873 677 | .0726837 .0374787 1.94 0.052 -.0007733 .1461407 678 | .0530418 .046525 1.14 0.254 -.0381455 .144229 679 | .4668917 .2002696 2.33 0.020 .0743705 .8594129 680 | .6216121 .2533763 2.45 0.014 .1250037 1.118221 681 | .727005 .3106338 2.34 0.019 .118174 1.335836 682 | .2855514 .110083 2.59 0.009 .0697926 .5013101 683 | 0 (omitted) | _cons | -15.44177 5.96521 -2.59 0.010 -27.13336 -3.750171 ----------------------------------------------------------------------------------- . end of do-file
- If I run -xtgls- including -i.county.- and -i.date- is this model similar to a FE or RE model using -xtreg- and -i.date-?
- Additionally, how do I know if I should add -corr(ar1)- or -corr(psar1).-? Is there a way to test for this?
Comment