Hello everyone,
I will begin by giving a bit of background of my work. I'm trying to study voting behavior of counties towards solar amendment. I have small sample with 67 observations. I ran this regression where:
pyamd4: % of votes in favor of amendment 4 of total votes.
larea: log of area
solarrr: solar resource
ofrepublicans: % of republicans
ofdemocracts: % of democrats
sjobs: no.of solar jobs
This data is at county level. When I do tests for checking Gauss-Markov assumptions. My regression doesn't satisfy normality and homoscedasticity assumption.
I ran following commands:
To correct homoscedasticity I use
but I'm stuck with non-normality.
What do I do from this point on, once I know that error terms of my distribution are not normally distributed? I read queries on this forum and found out that its ok if errors are not normally distributed. What can I do next, given I have small sample.
Can anyone please help me with this?
Thanks,
Ritika
I will begin by giving a bit of background of my work. I'm trying to study voting behavior of counties towards solar amendment. I have small sample with 67 observations. I ran this regression where:
pyamd4: % of votes in favor of amendment 4 of total votes.
larea: log of area
solarrr: solar resource
ofrepublicans: % of republicans
ofdemocracts: % of democrats
sjobs: no.of solar jobs
This data is at county level. When I do tests for checking Gauss-Markov assumptions. My regression doesn't satisfy normality and homoscedasticity assumption.
I ran following commands:
Code:
reg pyamd4 larea lpcincome solarres ofrepublicans ofdemocracts sjobs predict resi2, resid kdensity resi2, normal pnorm resi2 rvfplot, yline(0) estat hettest estat vif
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input str12 county double pyamd4 float(larea lpcincome) double(solarresource ofrepublicans ofdemocracts) int sjobs "Alachua" .7226168507798478 6.876389 10.1565 4.65439856159 .280860877128731 .4767270188610145 40 "Baker" .637917485265226 6.37824 9.962793 4.58400273448 .5325954919692266 .3577405857740586 2 "Bay" .695111748535915 6.940484 10.154052 4.66124543391 .5188370359825488 .25756370426816505 34 "Bradford" .6416365428853106 6.397046 9.89606 4.60320281519 .4706863532464323 .37239760301476493 2 "Brevard" .7232516245255098 8.043622 10.246687 4.87910985947 .42041183632417556 .31021265537701936 227 "Broward" .7634885255699859 7.878212 10.274603 4.74840814016 .21428565234997213 .5006594298468093 830 "Calhoun" .6345191773207337 7.046369 9.714746 4.56599260982 .2917004282903114 .5917351545317745 2 "Charlotte" .7082288348132583 7.449056 10.234947 5.05225627719 .4495916494953901 .27426414186231896 52 "Citrus" .6500029916831209 7.343614 10.093612 4.85882703118 .4743051500912874 .27384361590717415 36 "Clay" .6963859614237423 7.160388 10.209464 4.57542817673 .536944088549578 .2207135215099922 23 "Collier" .7108576736505315 8.435953 10.586988 4.92136245798 .5084053116401484 .23635363081708338 125 "Columbia" .6537055500166168 7.379058 9.9931 4.62466003525 .4529435423055653 .36121864159670203 10 "Desoto" .4509561998766194 7.153826 9.723763 4.95785739711 .333633741888969 .4367940398942562 6 "Dixie" .5995740149094782 7.454326 9.824986 4.82430395388 .39644351464435146 .43964435146443515 1 "Duval" .710956156270895 7.515574 10.212258 4.60426204932 .36803260704460683 .40638132689743633 203 "Escambia" .6779929107748599 7.468022 10.107734 4.51376248655 .448691172042651 .3389188129979497 58 "Flagler" .6980101041344469 7.040107 10.139112 4.66401260913 .4087013034788047 .31006364115706736 13 "Franklin" .7004860267314702 7.637692 9.976505 4.76870872546 .3287958115183246 .5280104712041885 2 "Gadsden" .640840098835157 6.963171 9.808462 4.72360658646 .15837943597355283 .7410268519767913 4 "Gilchrist" .6225533158048495 6.566588 9.981374 4.65617175536 .5506797453106178 .28945104112889347 2 "Glades" .6509330406147091 7.58724 9.786841 5.03319253753 .394491337183474 .4164075225825559 1 "Gulf" .6382636655948553 7.305981 9.905985 4.72645654176 .47902825979176994 .39325731284085275 3 "Hamilton" .6235790841182202 6.945648 9.678467 4.56765750397 .31562459208980553 .555671583344211 1 "Hardee" .6595531843947983 7.152002 9.751443 4.89647433975 .4355676477862973 .37274301261439524 4 "Hendry" .5872241579558652 7.774683 9.799626 4.91611670705 .3587321459056507 .4469356399021226 8 "Hernando" .7366509134513649 7.071709 10.018377 4.8535054563 .41166375601974703 .31743439704248033 36 "Highlands" .6923626831883712 7.70191 9.994972 4.88375874447 .46089146224475813 .30565643415102095 27 "Hillsborough" .7502068011249982 7.836935 10.265593 4.90972701385 .3164335122057136 .3895842827726571 373 "Holmes" .6340051885851128 6.884906 9.789983 4.61156498685 .5752961082910322 .3109607068997932 2 "Indian River" .6933540229126085 7.117903 10.37997 4.77615442332 .46186095260277166 .27206600317116214 58 "Jackson" .617502017394423 7.554424 9.753942 4.61020853014 .3681511178531441 .5220500595947557 6 "Jefferson" .5825697413968641 7.149359 9.966979 4.71163779583 .3255119892971082 .5567562004733971 2 "Lafayette" .5732484076433121 6.999277 9.869983 4.66603018766 .37749419953596286 .5501160092807425 1 "Lake" .7150353178607467 7.746219 10.116984 4.76585934848 .4386257418557841 .3059685375398464 84 "Lee" .7198267466773017 7.7931 10.27329 5.08122556844 .42961215585152507 .27070839730286894 271 "Leon" .7125818327197615 7.246767 10.210605 4.87836678018 .27558221082924234 .5238422287248192 63 "Levy" .6469058762350494 7.946133 9.93086 4.79619548754 .4675927605092307 .33433680316274345 10 "Liberty" .5844265763859501 7.430304 9.753711 4.60028333567 .195273061037173 .7145479577787977 1 "Madison" .6113495469718646 7.266541 9.710267 4.62748019288 .2969398999745698 .5873527167924049 2 "Manatee" .7277555253558401 7.487432 10.279867 4.99956594744 .431882177274788 .30541656788490573 75 "Marion" .6876961043539573 8.109538 10.01637 4.6787968369 .44258642241109014 .3295527230009657 84 "Martin" .7248721303675508 7.31694 10.48827 4.86743452803 .49614654601633196 .2527124255131318 82 "Miami-Dade" .7421913842336139 8.489312 10.10704 4.76655273126 .26409123724973016 .4193518180973417 888 "Monroe" .8086342621516931 8.919226 10.512465 5.02861857762 .39071069253753926 .3234804644653731 46 "Nassau" .6888182460389545 7.280504 10.34628 4.62281322707 .5742732160758225 .21821744281418026 10 "Okaloosa" .6746022759440639 7.6797 10.29563 4.53543954523 .5775714983652148 .18802660753880265 32 "Okeechobee" .6424082708291101 7.486142 9.751094 4.91590516457 .4348706300612285 .3615939166502074 9 "Orange" .7437151125879142 7.605069 10.173896 4.75654910609 .26807206698922464 .4222231136635088 375 "Osceola" .7383541033866069 8.010595 9.877246 4.79563595013 .22776479677401118 .4276743484897021 48 "Palm Beach" .7671382881409122 8.470651 10.458694 4.82882928978 .28197111643855743 .4216997794176059 899 "Pasco" .7730504981106149 7.459252 10.13559 4.87800932823 .38885741374525945 .31275147997410047 86 "Pinellas" .7932731210433623 7.102787 10.34287 5.14775717258 .3537068650630509 .35528867682592274 365 "Polk" .7169741434575112 8.299049 9.983638 4.8238532677 .3565602680539635 .3540889006456417 122 "Putnam" .653510165184244 7.411145 9.828818 4.63264384388 .398695040300226 .40210669964604034 10 "Santa Rosa" .6485668276972625 7.760953 10.24775 4.53922072531 .5853649184426261 .1929155898434804 20 "Sarasota" .7595158312247828 7.279567 10.469086 5.08188199762 .4252344638799749 .30604427646820753 196 "Seminole" .7452675510508272 6.536344 10.31218 4.72133385234 .36974259843320784 .33977685081561365 254 "St. Johns" .7194724633148278 7.404194 10.554823 4.678036611 .526244747784817 .23706267824875363 30 "St. Lucie" .6752733042098629 7.227052 10.090133 4.77358116458 .3222108965903186 .39691509773354117 0 "Sumter" .702576850360619 7.056701 10.360627 4.78716291733 .5398208691630049 .24996320669427916 15 "Suwannee" .6476301930953774 7.232589 9.868999 4.61778977673 .45817059834400875 .3811904389939072 4 "Taylor" .5864406779661017 7.809549 9.685393 4.78342347039 .36663611365719523 .5282893092242313 3 "Union" .6504285069914298 6.213448 9.46831 4.62037857743 .4332100287710645 .4640361693382655 1 "Volusia" .7370536548887643 7.960282 10.11997 4.70158898802 .3545647840885201 .34271207278746285 188 "Wakulla" .6890025019036223 7.294024 10.004644 4.87937102228 .41265280280524036 .41187356937612624 3 "Walton" .6973589723130934 7.814428 10.256782 4.59274840879 .6010498155729399 .19409428073446558 10 "Washington" .6455675498855087 7.116053 9.811317 4.57566850274 .5142911706664969 .33986886498185753 2 end
Code:
vce(robust)
What do I do from this point on, once I know that error terms of my distribution are not normally distributed? I read queries on this forum and found out that its ok if errors are not normally distributed. What can I do next, given I have small sample.
Can anyone please help me with this?
Thanks,
Ritika
Comment