Hi There,
I'm having difficulty getting my latent growth model to converge. I am trying to estimate the intercept and linear slope of a variable collected at three timepoints (bias1 bias8 bias15). Using the trouble shooting section of the Stata manual, I was able to identify that the problem is that my variances of my latent variables and an exogenous observed variable are going to zero, and no modification of the starting values has seemed to resolve the problem. What did resolve the problem was constraining the problem variances to 1 (see below). What are the implications of constraining the model in this way? Can the parameter estimates still be valid?
I'm having difficulty getting my latent growth model to converge. I am trying to estimate the intercept and linear slope of a variable collected at three timepoints (bias1 bias8 bias15). Using the trouble shooting section of the Stata manual, I was able to identify that the problem is that my variances of my latent variables and an exogenous observed variable are going to zero, and no modification of the starting values has seemed to resolve the problem. What did resolve the problem was constraining the problem variances to 1 (see below). What are the implications of constraining the model in this way? Can the parameter estimates still be valid?
Code:
sem (I -> bias1@1 bias8@1 bias15@1) (S -> bias1@0 bias8@1 bias15@2) /// (I S pcltot_1 -> pcltot_2) (cond3 pcltot_1 -> S I) if (status==1), /// var(e.I@1 e.pcltot_2@1)
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float(bias1 bias8 bias15 pcltot_1 pcltot_2) byte(status cond3) 50.72662 46.35406 -74.31885 67 66 1 0 -16.848877 34.93335 51.38678 86 65 1 1 -18.862549 -30.511597 . 100 100 1 0 -17.005737 16.75708 -5.733887 83 66 1 1 81.79395 -26.947693 21.27118 70 70 1 0 -56.50024 -6.033813 -9.299438 60 66 1 1 . -36.430542 31.56531 60 62 1 0 -14.743286 -62.68158 13.5589 65 34 1 0 61.46094 -42.19403 -33.318176 100 100 1 0 -16.464478 12.968872 -9.50177 43 68 1 1 -55.65192 15.67102 -4.5979004 78 43 1 1 -32.79889 -20.813354 19.91559 64 68 1 0 -30.289917 -31.182556 -14.216492 73 60 1 0 54.4599 15.295593 43.17926 59 49 1 0 -38.3089 -1.64093 7.22876 58 61 1 0 -17.537598 -6.139343 18.042175 59 49 1 0 85.21997 10.187256 12.340637 83 61 1 1 -65.7027 -1.7076416 144.98267 72 86 1 0 113.39447 31.173584 97.36334 71 77 1 0 . 28.552185 . 75 85 1 1 3.445007 -30.490845 -45.90674 77 79 1 0 -7.616333 -.6096191 -18.210266 72 67 1 1 . -30.26892 43.51868 74 62 1 0 50.09943 -43.37177 -2.722473 56 43 1 1 48.41949 10.556763 31.38495 54 52 1 0 10.750732 -5.559631 63.67004 85 70 1 1 30.80481 4.149048 . 60 29 1 0 30.829773 26.18823 -37.978577 86 75 1 0 -11.0578 8.23877 11.26538 44 40 1 1 -51.78711 14.556152 7.198608 59 48 1 1 -18.026855 2.0898438 -36.15735 61 43 1 1 -50.66699 65.99982 -24.184143 85 20 1 1 27.027405 -39.91675 -30.62897 87 92 1 1 -10.959229 9.856873 -5.990784 87 59 1 1 .0947876 -13.710144 . 63 48 1 0 -7.798706 -37.735107 19.96411 38 54 1 1 91.47205 -26.766907 23.696167 45 72 1 0 5.792786 . 136.65924 72 81 1 0 -32.124146 8.849426 . 55 57 1 1 3.640991 4.642639 -11.20288 62 41 1 1 47.20209 18.21106 -49.46057 62 58 1 1 48.90637 -35.92627 -61.00037 81 59 1 1 -70.581116 14.91504 26.250366 64 65 1 0 27.700867 -23.816895 -1.996521 78 44 1 0 29.52368 39.00415 -81.7655 46 43 1 0 39.10889 -.2027588 77.15845 42 26 1 0 -35.754333 -25.199707 -40.31506 68 68 1 1 -24.81 .6847534 -16.282593 70 79 1 0 1.385132 35.71039 23.19513 85 91 1 1 -75.41724 17.45935 -68.57477 71 20 1 0 1.0522461 -21.77301 24.35034 66 58 1 1 -27.04651 1.5617065 -9.128357 74 55 1 1 -37.85144 11.499756 -15.968018 66 24 1 0 23.433105 1.71344 -22.17914 66 59 1 1 -18.992065 -13.257263 -62.21466 92 72 1 0 -4.7525635 -53.54388 54.69061 69 53 1 1 5.111816 -13.55005 11.65869 77 66 1 0 11.895752 34.177917 -1.5999146 72 57 1 0 6.607056 -34.812317 21.727356 66 21 1 0 -1.3138428 -28.264404 -55.25183 83 77 1 0 6.936768 -14.408508 42.30225 64 28 1 1 . . . 54 42 1 0 24.7204 4.3624268 18.204346 86 63 1 0 33.307983 -32.409912 -18.72174 81 67 1 1 -44.72766 -10.523193 -6.378723 47 52 1 0 -32.897583 19.213684 28.01233 64 70 1 1 51.99274 17.490112 -59.8125 59 38 1 0 -6.570435 13.099487 -.7216797 55 53 1 0 17.139343 -2.972534 -11.387756 57 43 1 0 30.321045 -39.47168 . 63 46 1 1 -43.62738 53.53833 3.940796 65 49 1 0 -31.602234 -11.476501 -41.62286 49 49 1 0 -58.50317 -97.23523 75.81476 81 65 1 1 -12.88922 -41.6261 5.341431 83 85 1 1 5.430359 -37.14032 . 59 64 1 1 -6.488464 -14.42987 28.3526 69 59 1 1 -54.85425 -45.43951 -114.44684 99 73 1 0 -34.65039 -7.399658 -28.279724 51 41 1 1 -72.52374 .1867676 39.56714 45 42 1 0 6.427307 -45.1311 26.7077 56 40 1 1 . 27.1322 -32.99536 59 76 1 1 -45.72913 -2.757263 -37.852356 56 60 1 1 16.995544 -16.69281 -67.17621 65 54 1 0 17.650146 -27.74402 . 84 75 1 0 17.913757 35.352905 -4.388733 32 20 1 0 -55.60132 27.75061 . 74 57 1 0 48.32593 -3.091553 24.66284 82 42 1 1 29.70709 -32.517212 29.64197 52 50 1 0 -57.65033 7.196594 .3500366 56 76 1 0 -30.5025 12.665833 -86.94556 78 63 1 0 29.442566 -7.301392 24.843506 43 47 1 1 . -19.76007 . 85 55 1 1 36.68683 . -17.065613 54 69 1 0 41.39307 34.438965 25.516113 40 24 1 0 -24.58264 55.27649 -42.38269 76 88 1 1 -10.977905 14.54358 86.59998 59 42 1 1 23.900146 44.76068 -40.16736 64 51 1 0 . 2.989685 2.87146 61 56 1 1 -20.45227 27.89612 -17.881104 62 44 1 0 37.193115 21.5025 18.563599 52 48 1 0 end
Comment