Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • asreg, fmb function

    Hi dear Stata usrs,

    I am new to this program and would really appreciate any help/ advice I could get fom you.
    Currently I am trying to replicate results form the Lettau Paper: Reserruceting the (C)CAPM
    however I have run into some difficulty with the code asreg...with Fama Macbeth with further extensions to the fama-french factors

    I have panel data, portfolio*25, 141 quaters, panel variable PortfolioID and time variable qdate

    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input float qdate double RmRf long PortfolioId float ExcessReturn double _b_RmRf
     14  .030600000000000002 1   .015731012 1.6249410533570916
     15                .0355 1    -.0529796 1.6249410533570916
     16                .0541 1    .06708822 1.6249410533570916
     17  .028300000000000002 1   -.01749055 1.6249410533570916
     18                .0302 1    .06054076 1.6249410533570916
     19                .0059 1  -.008875915 1.6249410533570916
     20  .026000000000000002 1    .10884585 1.6249410533570916
     21               -.0325 1    -.1095675 1.6249410533570916
     22                .0721 1    .07718258 1.6249410533570916
     23                .0361 1     .1580933 1.6249410533570916
     24               -.0309 1    .12119982 1.6249410533570916
     25               -.0506 1   -.04876373 1.6249410533570916
     26  -.10439999999999999 1   -.16779438 1.6249410533570916
     27   .05480000000000001 1   .026802344 1.6249410533570916
     28                .1328 1     .3746144 1.6249410533570916
     29                .0172 1    .22967845 1.6249410533570916
     30   .06860000000000001 1     .2037378 1.6249410533570916
     31 .0013000000000000002 1    .12816793 1.6249410533570916
     32  -.07200000000000001 1   -.09860197 1.6249410533570916
     33                .1211 1    .31857675 1.6249410533570916
     34                .0262 1     .0519401 1.6249410533570916
     35                .0182 1    .07524841 1.6249410533570916
     36 -.043899999999999995 1   -.11570775 1.6249410533570916
     37               -.0576 1   -.14388427 1.6249410533570916
     38               -.0564 1   -.12933554 1.6249410533570916
     39               -.0165 1   -.05872784 1.6249410533570916
     40               -.0415 1    -.1080084 1.6249410533570916
     41               -.2182 1     -.417579 1.6249410533570916
     42   .16570000000000001 1     .3361435 1.6249410533570916
     43                .0819 1   -.10758695 1.6249410533570916
     44                .1054 1     .3385534 1.6249410533570916
     45               -.0099 1   -.07216685 1.6249410533570916
     46               -.0169 1   -.05716282 1.6249410533570916
     47  .034100000000000005 1    .00927644 1.6249410533570916
     48   .05940000000000001 1    .19291367 1.6249410533570916
     49               -.0094 1   -.07765593 1.6249410533570916
     50  .013500000000000002 1   -.14067286 1.6249410533570916
     51                .0588 1   -.06695006 1.6249410533570916
     52  -.08560000000000001 1   -.27592877 1.6249410533570916
     53               -.0898 1   -.26883635 1.6249410533570916
     54                .0593 1    .23699278 1.6249410533570916
     55               -.1315 1    -.3164497 1.6249410533570916
     56 -.034300000000000004 1    .08278478 1.6249410533570916
     57               -.1247 1   -.17736764 1.6249410533570916
     58  -.26789999999999997 1      -.30288 1.6249410533570916
     59   .07110000000000001 1    .00250248 1.6249410533570916
     60                .2331 1      .458694 1.6249410533570916
     61                  .15 1    .25176707 1.6249410533570916
     62  -.13240000000000002 1    -.1482514 1.6249410533570916
     63                .0644 1  -.007918526 1.6249410533570916
     64                .1528 1     .3058284 1.6249410533570916
     65                .0116 1 -.0042286133 1.6249410533570916
     66 .0033000000000000004 1   -.04640281 1.6249410533570916
     67                 .035 1    .12683548 1.6249410533570916
     68               -.0718 1   .013305895 1.6249410533570916
     69                .0333 1    .04078316 1.6249410533570916
     70               -.0371 1   .032719567 1.6249410533570916
     71               -.0025 1    .08024173 1.6249410533570916
     72 -.047400000000000005 1    .09057652 1.6249410533570916
     73                 .079 1    .18903707 1.6249410533570916
     74                .0763 1    .14273192 1.6249410533570916
     75               -.0876 1    -.1970072 1.6249410533570916
     76                .0626 1    .17219386 1.6249410533570916
     77                .0158 1    .03856019 1.6249410533570916
     78  .057800000000000004 1    .08902875 1.6249410533570916
     79               -.0159 1    .07220654 1.6249410533570916
     80               -.0917 1   -.14477758 1.6249410533570916
     81                .1295 1     .1673029 1.6249410533570916
     82                 .107 1     .3138375 1.6249410533570916
     83                .0596 1     .1389413 1.6249410533570916
     84               -.0128 1   -.04334942 1.6249410533570916
     85 -.041100000000000005 1  -.031451404 1.6249410533570916
     86               -.1542 1    -.3176091 1.6249410533570916
     87                 .045 1   .014312462 1.6249410533570916
     88               -.1077 1     -.151824 1.6249410533570916
     89               -.0375 1   -.04637446 1.6249410533570916
     90                .0908 1   .007857897 1.6249410533570916
     91                .1718 1     .2972317 1.6249410533570916
     92                .0929 1     .1848355 1.6249410533570916
     93   .10550000000000001 1    .23082162 1.6249410533570916
     94                -.034 1   -.16788845 1.6249410533570916
     95 -.027700000000000002 1   -.14269365 1.6249410533570916
     96 -.057800000000000004 1   -.12566718 1.6249410533570916
     97               -.0425 1   -.11388296 1.6249410533570916
     98                .0671 1  -.017584154 1.6249410533570916
     99               -.0079 1   -.11242592 1.6249410533570916
    100                .0819 1     .1532007 1.6249410533570916
    101   .05480000000000001 1  -.011048486 1.6249410533570916
    102 -.062000000000000006 1   -.09134184 1.6249410533570916
    103                .1522 1    .08163154 1.6249410533570916
    104                .1303 1    .13537428 1.6249410533570916
    105  .043899999999999995 1    .05558895 1.6249410533570916
    106               -.0922 1    -.1845279 1.6249410533570916
    107                .0265 1   -.07165623 1.6249410533570916
    108   .19340000000000002 1     .2431364 1.6249410533570916
    109                .0206 1   -.04031385 1.6249410533570916
    110  .047400000000000005 1  -.016991561 1.6249410533570916
    111               -.2432 1    -.3941709 1.6249410533570916
    112                .0667 1    .15586843 1.6249410533570916
    113                .0512 1   .022955963 1.6249410533570916
    end
    format %tq qdate
    label values PortfolioId Portfolio
    label def Portfolio 1 "ME1BM1", modify
    I understand from other posts that my data structure is flat? Meaning for all the portfolios my Factors will not change, it only changes by year...
    So the way i understood it, I could not directly use
    Code:
    bys PortfolioId: asreg ExcessReturn RmRf, fmb

    Instead in my first pass I do the first step of FMB by using code
    Code:
    bys PortfolioId: asreg ExcessReturn RmRf
    to generate 25 betas of market premium like the CAPM
    [CODE]
    CAPM beta as _b_RmRf for each portfolio... However with this code I get 141 Observations each Portfolio which leads to me getting 141*25 estimates
    I would now like to generate the second pass regression which uses the beta as independent variable,
    Code:
    asreg ExcessReturn _b_RmRf, fmb
    does not give me the same result as the paper R2is totally off, now I am wondering what I did wrong...

    Your help is deeply appreciated and desperately needed! thanks in advance!
Working...
X