Hi,
I'm trying to fit a two-level linear regression model with households at level 1 and states (state code) at level 2 using the National Sample Survey data (2011-2012). My dependent variable is household fruit and vegetable intake (g/capita/day) and I would like to look to estimate the contribution of household and state level factors (road density -rdennew, market density-mden) that drive household fruit and vegetable intakes.
mixed pcfruitvegg logmpce hh_size educfsp femhh rural hindu agri c0_5 i.tercilerainfall rdennew mden ||statecode:
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -83030.922
Iteration 1: log likelihood = -83030.922
Computing standard errors:
Mixed-effects ML regression Number of obs = 13,402
Group variable: statecode Number of groups = 5
Obs per group:
min = 569
avg = 2,680.4
max = 6,324
Wald chi2(12) = 6156.97
Log likelihood = -83030.922 Prob > chi2 = 0.0000
---------------------------------------------------------------------------------
pcfruitvegg | Coef. Std. Err. z P>|z| [95% Conf. Interval]
----------------+----------------------------------------------------------------
logmpce | 129.306 2.135464 60.55 0.000 125.1205 133.4914
hh_size | -7.762976 .4705432 -16.50 0.000 -8.685224 -6.840728
educfsp | .4859159 .3262967 1.49 0.136 -.153614 1.125446
femhh | 10.4659 3.649228 2.87 0.004 3.313547 17.61826
rural | -.5977197 2.273317 -0.26 0.793 -5.053338 3.857899
hindu | -.9536007 2.651058 -0.36 0.719 -6.14958 4.242378
agrihh | .0361239 2.119468 0.02 0.986 -4.117956 4.190204
c0_5 | 2.725623 1.30707 2.09 0.037 .1638132 5.287433
|
tercilerainfall |
2 | 8.955871 2.618222 3.42 0.001 3.824249 14.08749
3 | 37.90899 6.791959 5.58 0.000 24.597 51.22099
|
rdennew | 3.182636 5.868054 0.54 0.588 -8.318538 14.68381
mden | 1.109875 .9562233 1.16 0.246 -.7642887 2.984038
_cons | -711.6345 20.30829 -35.04 0.000 -751.438 -671.831
---------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
statecode: Identity |
var(_cons) | 453.4765 298.4873 124.8179 1647.527
-----------------------------+------------------------------------------------
var(Residual) | 14064.46 171.8451 13731.65 14405.34
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 160.80 Prob >= chibar2 = 0.0000
estat icc
Residual intraclass correlation
------------------------------------------------------------------------------
Level | ICC Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
statecode | .0312356 .0199215 .0087945 .1048813
------------------------------------------------------------------------------
My question is why are the random effects parameters so large? How would you interpret them? Have I estimated this correctly?
Thank you very much for your help.
Samira.
I'm trying to fit a two-level linear regression model with households at level 1 and states (state code) at level 2 using the National Sample Survey data (2011-2012). My dependent variable is household fruit and vegetable intake (g/capita/day) and I would like to look to estimate the contribution of household and state level factors (road density -rdennew, market density-mden) that drive household fruit and vegetable intakes.
mixed pcfruitvegg logmpce hh_size educfsp femhh rural hindu agri c0_5 i.tercilerainfall rdennew mden ||statecode:
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -83030.922
Iteration 1: log likelihood = -83030.922
Computing standard errors:
Mixed-effects ML regression Number of obs = 13,402
Group variable: statecode Number of groups = 5
Obs per group:
min = 569
avg = 2,680.4
max = 6,324
Wald chi2(12) = 6156.97
Log likelihood = -83030.922 Prob > chi2 = 0.0000
---------------------------------------------------------------------------------
pcfruitvegg | Coef. Std. Err. z P>|z| [95% Conf. Interval]
----------------+----------------------------------------------------------------
logmpce | 129.306 2.135464 60.55 0.000 125.1205 133.4914
hh_size | -7.762976 .4705432 -16.50 0.000 -8.685224 -6.840728
educfsp | .4859159 .3262967 1.49 0.136 -.153614 1.125446
femhh | 10.4659 3.649228 2.87 0.004 3.313547 17.61826
rural | -.5977197 2.273317 -0.26 0.793 -5.053338 3.857899
hindu | -.9536007 2.651058 -0.36 0.719 -6.14958 4.242378
agrihh | .0361239 2.119468 0.02 0.986 -4.117956 4.190204
c0_5 | 2.725623 1.30707 2.09 0.037 .1638132 5.287433
|
tercilerainfall |
2 | 8.955871 2.618222 3.42 0.001 3.824249 14.08749
3 | 37.90899 6.791959 5.58 0.000 24.597 51.22099
|
rdennew | 3.182636 5.868054 0.54 0.588 -8.318538 14.68381
mden | 1.109875 .9562233 1.16 0.246 -.7642887 2.984038
_cons | -711.6345 20.30829 -35.04 0.000 -751.438 -671.831
---------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
statecode: Identity |
var(_cons) | 453.4765 298.4873 124.8179 1647.527
-----------------------------+------------------------------------------------
var(Residual) | 14064.46 171.8451 13731.65 14405.34
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 160.80 Prob >= chibar2 = 0.0000
estat icc
Residual intraclass correlation
------------------------------------------------------------------------------
Level | ICC Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
statecode | .0312356 .0199215 .0087945 .1048813
------------------------------------------------------------------------------
My question is why are the random effects parameters so large? How would you interpret them? Have I estimated this correctly?
Thank you very much for your help.
Samira.
Comment