dear all, I now face an easy question that's confusing me. There are three variables as follows:
Age: the age of mother in a household
Child: the number of children in a household
ln_ninc: ln(husband income)
I use this code to estimate the income impact of fathers on the fertility(the number of children)
And then report the elasticity: the percentage change effect of husband income on the percentage change of fertility.
There are two ways to get it:
1.
2. since the estimated coefficient equals dy/dlnx=dy/dx*x, e=dy/dx*x/y, I can also use this code to calculate the elasticity
The two results are quite similar. But what confused me is that the paper reported this number as _b[ln_ninc]*r(mean) [my guess as the results show]
Can anyone help explain why I am wrong.
for your convenience, you can get the paper here: https://core.ac.uk/download/pdf/6543120.pdf
the data here: https://dataverse.harvard.edu/datase...l:1902.1/21475
------------------ copy up to and including the previous line ------------------
Listed 100 out of 422427 observations
Age: the age of mother in a household
Child: the number of children in a household
ln_ninc: ln(husband income)
I use this code to estimate the income impact of fathers on the fertility(the number of children)
Code:
areg child ln_ninc, robust a(age)
There are two ways to get it:
1.
Code:
margins,eydx(ln_ninc)
Code:
local b=_b[ln_ninc] sum child local y=r(mean) dis "e=" `b'/`y'
Can anyone help explain why I am wrong.
for your convenience, you can get the paper here: https://core.ac.uk/download/pdf/6543120.pdf
the data here: https://dataverse.harvard.edu/datase...l:1902.1/21475
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input int age float child double ln_ninc 42 2 11.290756438652245 49 4 11.27935271816548 43 1 10.610660904829166 43 1 9.751559401061966 42 2 10.308952660644293 43 0 11.589432699447986 42 2 11.32506459446695 46 3 10.400406931127549 45 1 11.404226048046887 45 2 11.040999990161794 42 2 11.245725527459099 41 2 10.761004448831892 42 2 10.408526465540385 40 2 10.916015307290108 40 3 10.696480068065789 42 3 10.460643173884725 49 1 11.010844825456925 44 3 11.079184331510326 43 1 10.620009404412524 41 3 10.50701085558772 45 0 11.372191049896736 40 2 11.195471234184778 41 2 10.487740202378962 40 2 10.314371286671152 43 1 10.126631103850338 47 1 9.187583384853566 50 0 10.72326738402944 46 2 11.396739902673568 40 0 11.082142548877775 46 3 11.726527641797215 43 2 10.82774645405946 44 3 10.968198289528557 42 2 10.911445472936107 45 2 10.894384703747138 45 2 11.049301442688533 45 3 10.705489138008156 46 2 10.72326738402944 40 2 11.088155205804059 41 2 10.858998997563564 43 1 9.94515718770752 44 1 9.135616825780247 41 1 11.324618028491475 47 2 10.463131911491967 49 1 11.2708539037705 44 4 10.858998997563564 48 0 11.01613423016804 49 4 11.242257822677576 47 3 10.959540226785442 42 1 10.121015365064702 40 2 11.745440962083432 42 3 10.491274217438248 42 2 9.848978567035735 40 2 10.82377030567982 43 8 11.486930504693143 48 4 10.961277846683982 44 0 7.824046010856292 44 3 11.46831505345168 49 2 11.300746581380709 40 3 8.699514748210191 40 4 11.187818399427712 42 3 11.02679245379461 40 2 10.856110213657674 40 5 10.222631954177766 49 1 11.344506813345266 43 2 10.336892029333534 43 3 10.9244805834911 50 2 10.68311055003235 48 1 9.128370809108931 48 2 9.852194258148577 40 1 10.927771331913476 50 3 10.46310334047155 42 0 10.522880544507412 42 2 11.330611908144274 42 3 11.09093455490473 47 2 11.273690640756074 50 3 9.913437883389296 40 2 10.308952660644293 43 5 10.842517771379773 43 0 9.845593574117226 40 1 11.048888002702997 47 4 11.122191321462058 47 3 10.783114300038692 41 0 10.776870783399007 44 0 11.677804108152463 43 1 10.132056360495403 40 1 10.915088464214607 41 1 11.222452835867818 41 0 11.156250521031495 49 4 10.491274217438248 48 2 9.392661928770137 49 1 11.401993904262946 40 1 10.596634733096073 41 2 11.961315953929825 46 4 11.762601885782415 47 3 10.641034320392757 44 3 11.27236867948514 45 2 11.016545005635734 40 2 10.961555585888657 40 1 11.107510355612106 50 4 10.941995917134532 end label values age agelbl label def agelbl 40 "40", modify label def agelbl 41 "41", modify label def agelbl 42 "42", modify label def agelbl 43 "43", modify label def agelbl 44 "44", modify label def agelbl 45 "45", modify label def agelbl 46 "46", modify label def agelbl 47 "47", modify label def agelbl 48 "48", modify label def agelbl 49 "49", modify label def agelbl 50 "50", modify
Listed 100 out of 422427 observations
Comment