Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Comaring -xtnbreg- models

    Hello Stata People,

    I am struggling with understanding how to pick one Random Effects Regression Model over another (using negative binomial).
    In OLS linear regression I would look at R2, however, my xtnbreg ..., re command does not give me this value. How can I compare which model is better? I have the feeling it might have something to do with Wald Chi2, but really, I don't know

    for example: I use control variables with different time specifications, eg. going back 3 years vs going back 5 years. Everything is the same except that. Now I have the two ouputs, where can I see which model better predicts my dependent variable so that I can choose which control variables to include in the end?

    Model 1 Command:
    . xtnbreg CitFirst Year IntegrationB CEOB AcRDIntensity TaRelSize IndustryRel TS3 AcPat3 TaPat3 RelBase3 CitFAll3, re

    Results Model 1:
    HTML Code:
       	 		 			Random effects u_i ~ Beta 			Obs per group: 		 		 			  			min = 1 		 		 			  			avg = 4.7 		 		 			  			max = 5 		 		 			  			Wald chi2(11) = 72.34 		 		 			Log likelihood = -700.72416 			Prob > chi2 = 0.0000 		 		 			  			  		 		 			CitFirst Coef. Std. Err. 			z 			P>z [95% Conf. Interval] 		 		 			  		 		 			Year -.3591065 .0596958 			-6.02 			0.000 -.4761081 -.2421048 		 		 			IntegrationB -.4588381 .2820413 			-1.63 			0.104 -1.011629 .0939528 		 		 			CEOB -.0611872 .2353371 			-0.26 			0.795 -.5224395 .4000651 		 		 			AcRDIntensity -.6525456 .2689885 			-2.43 			0.015 -1.179753 -.1253379 		 		 			TaRelSize -.2714529 .4692806 			-0.58 			0.563 -1.191226 .6483201 		 		 			IndustryRel -.0054288 .3405246 			-0.02 			0.987 -.6728447 .6619872 		 		 			TS3 2.15263 .6623846 			3.25 			0.001 .8543796 3.45088 		 		 			AcPat3 .0000837 .0000921 			0.91 			0.364 -.0000969 .0002642 		 		 			TaPat3 .0039008 .0041908 			0.93 			0.352 -.0043131 .0121147 		 		 			RelBase3 -.0415342 .142761 			-0.29 			0.771 -.3213407 .2382722 		 		 			CitFAll3 .00287 .0070084 			0.41 			0.682 -.0108661 .0166061 		 		 			_cons -.1567299 .4392308 			-0.36 			0.721 -1.017606 .7041467 		 		 			  		 		 			/ln_r .10801 .1968741 			-.2778561 .4938762 		 		 			/ln_s -.1608182 .3354247 			-.8182385 .4966021 		 		 			  		 		 			r 1.114059 .2193293 			.7574058 1.638656 		 		 			s .8514468 .2855963 			.4412082 1.643129 		 		 			  		 		 			LR test vs. pooled: chibar2(01) = 124.46 			Prob >= chibar2 = 0.000



    Model 2 Command:
    . xtnbreg CitFirst Year IntegrationB CEOB AcRDIntensity TaRelSize IndustryRel TS5 AcPat5 TaPat5 RelBase5 CitFAll5, re

    Results Model 2:
    HTML Code:
       	 		 			Random-effects negative binomial regression 			Number of obs = 620 		 		 			Group variable: dealnumber 			Number of groups = 132 		 		 			Random effects u_i ~ Beta 			Obs per group: 		 		 			min = 1 		 		 			avg = 4.7 		 		 			max = 5 		 		 			  			Wald chi2(11) = 67.73 		 		 			Log likelihood = -703.15233 			Prob > chi2 = 0.0000 		 		 			  		 		 			CitFirst Coef. Std. Err. z 			P>z [95% Conf. Interval] 		 		 			  		 		 			Year -.3577128 .058282 -6.14 			0.000 -.4719433 -.2434823 		 		 			IntegrationB -.4594767 .2560041 -1.79 			0.073 -.9612355 .0422821 		 		 			CEOB -.0456475 .2331215 -0.20 			0.845 -.5025573 .4112622 		 		 			AcRDIntensity -.5919459 .2426813 -2.44 			0.015 -1.067592 -.1162993 		 		 			TaRelSize -.2345956 .4647577 -0.50 			0.614 -1.145504 .6763128 		 		 			IndustryRel -.0626072 .3458162 -0.18 			0.856 -.7403945 .61518 		 		 			TS5 1.741602 .6018254 2.89 			0.004 .5620463 2.921159 		 		 			AcPat5 .0000725 .0000639 1.13 			0.257 -.0000528 .0001979 		 		 			TaPat5 .0023788 .0015033 1.58 			0.114 -.0005677 .0053253 		 		 			RelBase5 -.0371322 .0354005 -1.05 			0.294 -.1065158 .0322514 		 		 			CitFAll5 .0047013 .0067243 0.70 			0.484 -.008478 .0178807 		 		 			_cons -.1014699 .4486066 -0.23 			0.821 -.9807227 .7777829 		 		 			  		 		 			/ln_r .1122034 .1803263 			-.2412296 .4656364 		 		 			/ln_s -.1602047 .3000423 			-.7482768 .4278673 		 		 			  		 		 			r 1.11874 .2017383 			.7856612 1.593028 		 		 			s .8519693 .2556268 			.4731813 1.533982 		 		 			  		 		 			LR test vs. pooled: chibar2(01) = 124.74 			Prob >= chibar2 = 0.000


    So, how do I know which model is better? Thanks in advance!!!

  • #2
    Wow, sorry, that post did not work out, so here is my output in a not very nice looking (if anyone can tell me how to nicely show my output here, too?)

    Model 1:
    Random-effects negative binomial regression Number of obs = 620
    Group variable: dealnumber Number of groups = 132

    Random effects u_i ~ Beta Obs per group:
    min = 1
    avg = 4.7
    max = 5

    Wald chi2(11) = 72.34
    Log likelihood = -700.72416 Prob > chi2 = 0.0000


    CitFirst Coef. Std. Err. z P>z [95% Conf. Interval]

    Year -.3591065 .0596958 -6.02 0.000 -.4761081 -.2421048
    IntegrationB -.4588381 .2820413 -1.63 0.104 -1.011629 .0939528
    CEOB -.0611872 .2353371 -0.26 0.795 -.5224395 .4000651
    AcRDIntensity -.6525456 .2689885 -2.43 0.015 -1.179753 -.1253379
    TaRelSize -.2714529 .4692806 -0.58 0.563 -1.191226 .6483201
    IndustryRel -.0054288 .3405246 -0.02 0.987 -.6728447 .6619872
    TS3 2.15263 .6623846 3.25 0.001 .8543796 3.45088
    AcPat3 .0000837 .0000921 0.91 0.364 -.0000969 .0002642
    TaPat3 .0039008 .0041908 0.93 0.352 -.0043131 .0121147
    RelBase3 -.0415342 .142761 -0.29 0.771 -.3213407 .2382722
    CitFAll3 .00287 .0070084 0.41 0.682 -.0108661 .0166061
    _cons -.1567299 .4392308 -0.36 0.721 -1.017606 .7041467

    /ln_r .10801 .1968741 -.2778561 .4938762
    /ln_s -.1608182 .3354247 -.8182385 .4966021

    r 1.114059 .2193293 .7574058 1.638656
    s .8514468 .2855963 .4412082 1.643129

    LR test vs. pooled: chibar2(01) = 124.46 Prob >= chibar2 = 0.000


    Model 2:
    Random-effects negative binomial regression Number of obs = 620
    Group variable: dealnumber Number of groups = 132

    Random effects u_i ~ Beta Obs per group:
    min = 1
    avg = 4.7
    max = 5

    Wald chi2(11) = 67.73
    Log likelihood = -703.15233 Prob > chi2 = 0.0000

    -------------------------------------------------------------------------------
    CitFirst | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    --------------+----------------------------------------------------------------
    Year | -.3577128 .058282 -6.14 0.000 -.4719433 -.2434823
    IntegrationB | -.4594767 .2560041 -1.79 0.073 -.9612355 .0422821
    CEOB | -.0456475 .2331215 -0.20 0.845 -.5025573 .4112622
    AcRDIntensity | -.5919459 .2426813 -2.44 0.015 -1.067592 -.1162993
    TaRelSize | -.2345956 .4647577 -0.50 0.614 -1.145504 .6763128
    IndustryRel | -.0626072 .3458162 -0.18 0.856 -.7403945 .61518
    TS5 | 1.741602 .6018254 2.89 0.004 .5620463 2.921159
    AcPat5 | .0000725 .0000639 1.13 0.257 -.0000528 .0001979
    TaPat5 | .0023788 .0015033 1.58 0.114 -.0005677 .0053253
    RelBase5 | -.0371322 .0354005 -1.05 0.294 -.1065158 .0322514
    CitFAll5 | .0047013 .0067243 0.70 0.484 -.008478 .0178807
    _cons | -.1014699 .4486066 -0.23 0.821 -.9807227 .7777829
    --------------+----------------------------------------------------------------
    /ln_r | .1122034 .1803263 -.2412296 .4656364
    /ln_s | -.1602047 .3000423 -.7482768 .4278673
    --------------+----------------------------------------------------------------
    r | 1.11874 .2017383 .7856612 1.593028
    s | .8519693 .2556268 .4731813 1.533982
    -------------------------------------------------------------------------------
    LR test vs. pooled: chibar2(01) = 124.74 Prob >= chibar2 = 0.000


    Sorry, it's my first time

    Comment


    • #3
      Mary-Jane:
      the Stata outcomes you posted (for the future, please use CODE delimiters: just click on the #shaped button of the Advance editor bar and put what you typed and what Stata gave you back in between
      Code:
       the CODE bounds
      Thanks).
      That said, your models (as far as I can read them) give similar results.
      As a general rule, you should not go hunting for the best model (whatever that means), but give the truest and fairest representation of the data generating process: take a look at the literature in your research field and see what others did in the past when presented with the same research goal.
      Kind regards,
      Carlo
      (Stata 19.0)

      Comment

      Working...
      X