Hello everyone,
I have a question about the interpretation of the sigma_e estimate from xtregar, re.
Here is an example of such an outpput, taking from the manual :
----------------------------------------------------------------------------------------------------------------------------------
. xtregar invest mvalue kstock if year !=1934 & year !=1944, re lbi
RE GLS regression with AR(1) disturbances Number of obs = 190
Group variable: company Number of groups = 10
R-sq: within = 0.7707 Obs per group: min = 19
between = 0.8039 avg = 19.0
overall = 0.7958 max = 19
Wald chi2(3) = 351.37
corr(u_i, Xb) = 0 (assumed) Prob > chi2 = 0.0000
invest
Coef. Std. Err. z P>|z| [95% Conf. Interval]
mvalue
.0947714 .0083691 11.32 0.000 .0783683 .1111746
kstock
.3223932 .0263226 12.25 0.000 .2708019 .3739845
_cons
-45.21427 27.12492 -1.67 0.096 -98.37814 7.949603
rho_ar
.6697198 (estimated autocorrelation coefficient)
sigma_u
74.662876
sigma_e
42.253042
rho_fov
.75742494 (fraction of variance due to u_i)
theta
.66973313
modified Bhargava et al. Durbin-Watson = .71380994
Baltagi-Wu LBI = 1.0134522
----------------------------------------------------------------------------------------------------------------------------------
The model can be written as follows :
y_it = x_it * beta + u_i + eta_it
where eta_it follows an AR(1) process : eta_it = rho * eta_i,t-1 + nu_it
Is sigma_e an estimate of the standard deviation of eta_it or of nu_it ?
Since rho_fov = sigma_u ^2/(sigma_u ^2 + sigma_e^2), I would say eta_it but the manual (page 9) says it's the standard deviation of nu_it. I am a little bit confused.
I would appreciate your help.
Thanks.
I have a question about the interpretation of the sigma_e estimate from xtregar, re.
Here is an example of such an outpput, taking from the manual :
----------------------------------------------------------------------------------------------------------------------------------
. xtregar invest mvalue kstock if year !=1934 & year !=1944, re lbi
RE GLS regression with AR(1) disturbances Number of obs = 190
Group variable: company Number of groups = 10
R-sq: within = 0.7707 Obs per group: min = 19
between = 0.8039 avg = 19.0
overall = 0.7958 max = 19
Wald chi2(3) = 351.37
corr(u_i, Xb) = 0 (assumed) Prob > chi2 = 0.0000
invest
Coef. Std. Err. z P>|z| [95% Conf. Interval]
mvalue
.0947714 .0083691 11.32 0.000 .0783683 .1111746
kstock
.3223932 .0263226 12.25 0.000 .2708019 .3739845
_cons
-45.21427 27.12492 -1.67 0.096 -98.37814 7.949603
rho_ar
.6697198 (estimated autocorrelation coefficient)
sigma_u
74.662876
sigma_e
42.253042
rho_fov
.75742494 (fraction of variance due to u_i)
theta
.66973313
modified Bhargava et al. Durbin-Watson = .71380994
Baltagi-Wu LBI = 1.0134522
----------------------------------------------------------------------------------------------------------------------------------
The model can be written as follows :
y_it = x_it * beta + u_i + eta_it
where eta_it follows an AR(1) process : eta_it = rho * eta_i,t-1 + nu_it
Is sigma_e an estimate of the standard deviation of eta_it or of nu_it ?
Since rho_fov = sigma_u ^2/(sigma_u ^2 + sigma_e^2), I would say eta_it but the manual (page 9) says it's the standard deviation of nu_it. I am a little bit confused.
I would appreciate your help.
Thanks.
Comment