Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • SEM and convergence problem ADF method

    Hello all,
    I have a convergence issue. I have a SEM model which is working in SAS without any problems but when I run it in STATA it gives me the convergence error but the values that it shows after the error are the same as my estimates in SAS. I am using ADF method my sample size is 1601. the covariance that I added helped with the overall goodness of fit in my SAS model. Can somebody point out my mistake please? thank you.
    Click image for larger version

Name:	hahahahahahaha.JPG
Views:	1
Size:	58.7 KB
ID:	1459185

    Iteration 15999: discrepancy = .18240435 (not concave)
    Iteration 16000: discrepancy = .18240435 (not concave)
    convergence not achieved
    Structural equation model Number of obs = 1,601
    Estimation method = adf
    Discrepancy = .18240435
    ( 1) [TOT_VHCL0]KES = 1
    ( 2) [ACCISEV]CRASH = 1
    ( 3) [SKTRESNM2]SPEED = 1
    ----------------------------------------------------------------------------------------------------
    | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    ------------------- -------------+ ----------- ---------- -------- -------- ------------ ----------
    Structural |
    KES |
    SPEED | 0.200147 0.153684 1.3 0.193 -0.10107 0.501363
    ----------------- -------------+ --------- ---------- -------- ------- ------------ ----------
    CRASH |
    KES | 2.68267 0.872474 3.07 0.002 0.972653 4.392687
    SPEED | 1.114295 0.645734 1.73 0.084 -0.15132 2.37991
    ------------------- ---------------+ ------------- ---------- -------- -------- ------------ ----------
    Measurement |
    SKTRESNM2 |
    SPEED | 1 (constraine d)
    _cons | 1.202464 0.02869 41.91 0 1.146232 1.258696
    ----------------- --------------+ ------------ ---------- -------- -------- ------------ ----------
    ALCINVOLV |
    SPEED | 0.172996 0.113374 1.53 0.127 -0.04921 0.395205
    _cons | 0.023203 0.004265 5.44 0 0.014844 0.031561
    ----------------- --------------+ ---------- ---------- -------- -------- ------------ ----------
    TRWAYCHR |
    SPEED | 0.113768 0.074707 1.52 0.128 -0.03266 0.260192
    _cons | 1.031542 0.004318 238.88 0 1.023078 1.040006
    ----------------- --------------+ ------------ ---------- -------- -------- ------------ ----------
    GENDR |
    SPEED | 0.180859 0.210502 0.86 0.39 -0.23172 0.593434
    _cons | 1.496121 0.012075 123.91 0 1.472455 1.519786
    ----------------- --------------+ ------------ ---------- -------- -------- ------------ ----------
    DAYOFWEEK |
    SPEED | 0.340221 0.212306 1.6 0.109 -0.07589 0.756333
    _cons | 1.290697 0.010847 118.99 0 1.269436 1.311957
    ----------------- --------------+ ------------ ---------- -------- -------- ------------ ----------
    LIGHTCND1 |
    SPEED | 0.115429 0.073965 1.56 0.119 -0.02954 0.260396
    _cons | 1.01729 0.003661 277.84 0 1.010114 1.024466
    ----------------- --------------+ ----------- ---------- -------- -------- ------------ ----------
    TIME3 |
    SPEED | -0.47336 0.23695 -2 0.046 -0.93777 -0.00895
    _cons | 1.245035 0.010443 119.23 0 1.224568 1.265502
    ----------------- --------------+ ------------ ---------- -------- -------- ------------ ----------
    RDSURFCD |
    SPEED | -0.11368 0.119389 -0.95 0.341 -0.34768 0.12032
    _cons | 1.095947 0.007148 153.33 0 1.081937 1.109956
    ----------------- --------------+ ------------ ---------- -------- -------- ------------ ----------
    AGE_ATFAULT2 |
    SPEED | -0.70507 0.649262 -1.09 0.277 -1.9776 0.567458
    _cons | 2.835712 0.036264 78.2 0 2.764636 2.906788
    ----------------- --------------+ ---------- ---------- -------- -------- ------------ ----------
    TOT_VHCL0 |
    KES | 1 ( constraine d)
    _cons | 2.098298 0.010979 191.13 0 2.076781 2.119816
    ----------------- --------------+ ------------ ---------- -------- -------- ------------ ----------
    VHTYP2 |
    KES | -0.1698 0.278581 -0.61 0.542 -0.71581 0.376208
    _cons | 1.351595 0.011799 114.56 0 1.32847 1.37472
    ----------------- -------------+ ------------ ---------- -------- -------- ------------ ----------
    VHMOVE_ATFAULT |
    KES | -0.41692 0.233256 -1.79 0.074 -0.87409 0.040257
    _cons | 1.088591 0.007033 154.78 0 1.074806 1.102376
    ----------------- --------------+ ------------ ---------- -------- -------- ------------ ----------
    PNTIMP_ATFAULT |
    KES | -1.51186 0.867359 -1.74 0.081 -3.21185 0.188131
    _cons | 1.510912 0.012086 125.02 0 1.487225 1.5346
    ----------------- --------------+ ------------ ---------- -------- -------- ------------ ----------
    VHYEAR2 |
    KES | -1.20199 0.690825 -1.74 0.082 -2.55598 0.152006
    _cons | 2.303332 0.022631 101.78 0 2.258976 2.347688
    ----------------- --------------+ ------------ ---------- -------- -------- ------------ ----------
    ACCISEV |
    CRASH | 1 ( constraine d)
    _cons | 2.060651 0.024043 85.71 0 2.013527 2.107775
    ----------------- ------------+ ------------ ---------- -------- -------- ------------ ----------
    TOT_VH_DMG1 |
    CRASH | 0.63975 0.049732 12.86 0 0.542277 0.737223
    _cons | 2.357337 0.02804 84.07 0 2.30238 2.412294
    ----------------- ------------+ ------------ ---------- -------- -------- ------------ ----------
    TOT_INJR1 |
    CRASH | 1.200589 0.074196 16.18 0 1.055168 1.346009
    _cons | 1.141933 0.028033 40.74 0 1.08699 1.196877
    -----------------------------------+----------------------------------------------------------------
    var(e.SKTRESNM2)| 1.357836 0.036123 1.28885 1.430515
    var(e.ALCINVOLV)| 0.009742 . . .
    var(e.TRWAYCHR)| 0.068629 . . .
    var(e.GENDR)| 0.184055 . . .
    var(e.DAYOFWEEK)| 0.137293 . . .
    var(e.LIGHTCND1)| 0.02579 . . .
    var(e.TIME3)| 0.18399 . . .
    var(e.RDSURFCD)| 0.07841 . . .
    var(e.AGE_ATFAULT2)| 2.31953 0.047229 2.228785 2.41397
    var(e.TOT_VHCL0)| 0.085461 0.011939 0.06499 0.112379
    var(e.VHTYP2)| 0.237998 0.005898 0.226715 0.249843
    var(e.VHMOVE_ATFAULT)| 6710832 . . .
    var(e.PNTIMP_ATFAULT)| 4012065 . . .
    var(e.VHYEAR2)| 0.847778 0.024015 0.801993 0.896177
    var(e.ACCISEV)| 0.321992 0.035152 0.259967 0.398815
    var(e.TOT_VH_DMG1)| 1.068064 0.038958 0.994374 1.147215
    var(e.TOT_INJR1)| 0.369509 0.055423 0.275393 0.495789
    var(e.KES)| 0.009936 0.006632 0.002686 0.036757
    var(e.CRASH)| 0.462889 0.084022 0.324317 0.660668
    var(SPEED)| 0.033458 0.025775 0.007392 0.151443
    -----------------------------------+----------------------------------------------------------------
    cov(e.PNTIMP_ATFAULT,e.TOT_VH_DMG1)| -.0430937 .0125956 -3.42 0.001 -.0677806 -.0184067
    ----------------------------------------------------------------------------------------------------
    Note: The Discr. test of model vs. saturated is not reported because the
    fitted model is not full rank.
    convergence not achieved
    r(430);
    .
    .
    Last edited by iman gharraie; 22 Aug 2018, 14:48.

  • #2
    Imran, I'm not sure how much you know about maximum likelihood theory, and I'm not an expert myself. However, because this is a complex model, the likelihood function is probably not as well-behaved as others. Normally, Stata (and all other software) iteratively maximize the likelihood function by finding a better direction to step towards. Here, what I believe is happening is that the maximizer reached a point where the likelihood function is not concave, which means that the software isn't confident that it's at a global maximum, but it also can't find a better direction to step. (I'm an applied statistician, so I am not well-versed in the math, and this sort of thing is hard to explain in plain language.)

    Now, different software apply different convergence criteria. In all software, the change in log-likelihood (i.e. first derivative) from one iteration to the last has to be below a certain tolerance, e.g. 1 * 10^-7 (I think this is Stata's default). Stata applies a secondary criterion to the second derivative of the log-likelihood, but I am not sure if other software use a looser criterion or if they apply this criterion at all. Anyway, I believe this is what's giving rise to the error messages you see. SAS, apparently, declared convergence at this log-likelihood. (Actually, I see that your output doesn't report a log-likelihood and instead reports a discrepancy, so while I think the concepts I outlined have a parallel under asymptotic distribution free estimation, I'm not exactly sure if there's a log likelihood.)

    Unfortunately, in this case, I'm not sure what to do. Remember that this is a pretty complex model. I would not be surprised if estimation for this sort of model is a topic of ongoing research. One thing you can do is to inspect parameters with missing standard errors. Sometimes, this can reveal issues with the parameter (even if it can be unclear what to do). If the variance of something is nearly zero (e.g. less than 1 * 10^-10 or so), I think that can cause estimation to choke. If the variance is that small, you may be justified in removing that coefficient. I don't see that issue here.

    Two of the error variances, for vhmove and pntimp, look very large in absolute terms. Relative to the other variables in your model, is the scale of those variables very large? For example, do you mainly have binary variables, or continuous variables with a range of 0 to 100, but two continuous variables have ranges of 0 to 10,000? I think this can sometimes cause estimation problems. You might want to rescale the variables if this is so - you could simply express them in thousands, or take logs, or whatever.
    Be aware that it can be very hard to answer a question without sample data. You can use the dataex command for this. Type help dataex at the command line.

    When presenting code or results, please use the code delimiters format them. Use the # button on the formatting toolbar, between the " (double quote) and <> buttons.

    Comment

    Working...
    X