Dear Statalist,
I ran a growth curve model with mixed command in Stata, it contains three key independent variables (age("cage"), cohort, and years of education ("z_pgs_edu1")), and my outcome is mental status("lgrmstot"). When I try to use the margin command it is not estimable. I have attached my code and my results here (code and results on covariates are not shown). Could you please advise me on this?
Code:
Results:
Codes I have tried:
these all leads to not estimable margins:
Many thanks!
I ran a growth curve model with mixed command in Stata, it contains three key independent variables (age("cage"), cohort, and years of education ("z_pgs_edu1")), and my outcome is mental status("lgrmstot"). When I try to use the margin command it is not estimable. I have attached my code and my results here (code and results on covariates are not shown). Could you please advise me on this?
Code:
Code:
mixed lgrmstot c.cage##c.cage##c.cage##c.edu /// i.cohort c.cage#i.cohort c.cage#c.cage#i.cohort c.cage#c.cage#c.cage#i.cohort /// i.cohort#c.edu c.cage#i.cohort#c.edu c.cage#c.cage#i.cohort#c.edu /// c.cage#c.cage#c.cage#i.cohort#c.edu /// || hhidpn: cage, cov(ind) mle nolog
Code:
Mixed-effects ML regression Number of obs = 27,881 Group variable: hhidpn Number of groups = 4,802 Obs per group: min = 1 avg = 5.8 max = 8 Wald chi2(77) = 22612.79 Log likelihood = -21080.55 Prob > chi2 = 0.0000 ---------------------------------------------------------------------------------------------------------- lgrmstot | Coef. Std. Err. z P>|z| [95% Conf. Interval] -----------------------------------------+---------------------------------------------------------------- cage | -.2473601 .3037283 -0.81 0.415 -.8426566 .3479365 | c.cage#c.cage | .0132115 .0095055 1.39 0.165 -.005419 .031842 | c.cage#c.cage#c.cage | -.000212 .0001007 -2.11 0.035 -.0004093 -.0000147 | edu| 8.94467 3.492012 2.56 0.010 2.100452 15.78889 | c.cage#c.edu| -.8436244 .3206582 -2.63 0.009 -1.472103 -.215146 | c.cage#c.cage#c.edu1| .0262647 .0097161 2.70 0.007 .0072215 .0453078 | c.cage#c.cage#c.cage#c.edu| -.0002695 .0000972 -2.77 0.006 -.00046 -.0000791 | cohort | 2 | .0801404 3.242196 0.02 0.980 -6.274448 6.434728 3 | -1.809628 3.231423 -0.56 0.575 -8.1431 4.523845 4 | .8527643 3.374374 0.25 0.800 -5.760887 7.466416 | cohort#c.cage | 2 | -.0259877 .2997897 -0.09 0.931 -.6135647 .5615892 3 | .2350067 .2998016 0.78 0.433 -.3525936 .822607 4 | -1.008803 .3956974 -2.55 0.011 -1.784356 -.2332502 | cohort#c.cage#c.cage | 2 | .0044933 .0092 0.49 0.625 -.0135383 .0225249 3 | -.0047092 .0094165 -0.50 0.617 -.0231651 .0137468 4 | .1561045 .0247699 6.30 0.000 .1075565 .2046526 | cohort#c.cage#c.cage#c.cage | 2 | -.0001567 .0000941 -1.66 0.096 -.0003411 .0000278 3 | -.0001994 .0001051 -1.90 0.058 -.0004054 6.59e-06 4 | -.0065248 .0006746 -9.67 0.000 -.0078469 -.0052027 | cohort#c.edu | 2 | -8.307819 3.515025 -2.36 0.018 -15.19714 -1.418496 3 | -8.737698 3.501282 -2.50 0.013 -15.60008 -1.875311 4 | -9.128632 3.626381 -2.52 0.012 -16.23621 -2.021056 | cohort#c.cage#c.edu | 2 | .7628446 .324849 2.35 0.019 .1261524 1.399537 3 | .8086933 .3240678 2.50 0.013 .1735322 1.443854 4 | .8636496 .414882 2.08 0.037 .0504957 1.676803 | cohort#c.cage#c.cage#c.edu | 2 | -.0228991 .0099601 -2.30 0.021 -.0424206 -.0033777 3 | -.0243141 .0101058 -2.41 0.016 -.0441212 -.0045071 4 | -.0256847 .0254539 -1.01 0.313 -.0755733 .0242039 | cohort#c.cage#c.cage#c.cage#c.edu | 2 | .0002257 .0001017 2.22 0.026 .0000263 .0004251 3 | .0002382 .0001108 2.15 0.032 .0000211 .0004553 4 | .0001982 .0006938 0.29 0.775 -.0011617 .001558 | _cons | 5.805866 3.254935 1.78 0.074 -.5736896 12.18542 ---------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ hhidpn: Independent | var(cage) | .0001591 6.80e-06 .0001463 .000173 var(_cons) | 2.66e-14 2.08e-14 5.71e-15 1.24e-13 -----------------------------+------------------------------------------------ var(Residual) | .2248527 .0023499 .2202938 .229506 ------------------------------------------------------------------------------ LR test vs. linear model: chi2(2) = 1496.39 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference.
Code:
margins,dydx(i.cohort) at(z_pgs_edu1=(-1.5 1.5) cage=(0(5)40)) atmeans vsquish margins, at(z_pgs_edu1=(-1.5 1.5) cage=(0(5)40) cohort = (1 2 3 4)) vsquish margins cohort, at(z_pgs_edu1=(-1.5 1.5) cage=(0(5)40)) vsquish
Code:
. margins cohort, at(z_pgs_edu1=(-1.5 1.5) cage=(0(5)40)) vsquish Predictive margins Number of obs = 27,881 Expression : Linear prediction, fixed portion, predict() 1._at : cage = 0 z_pgs_edu1 = -1.5 2._at : cage = 0 z_pgs_edu1 = 1.5 3._at : cage = 5 z_pgs_edu1 = -1.5 4._at : cage = 5 z_pgs_edu1 = 1.5 5._at : cage = 10 z_pgs_edu1 = -1.5 6._at : cage = 10 z_pgs_edu1 = 1.5 7._at : cage = 15 z_pgs_edu1 = -1.5 8._at : cage = 15 z_pgs_edu1 = 1.5 9._at : cage = 20 z_pgs_edu1 = -1.5 10._at : cage = 20 z_pgs_edu1 = 1.5 11._at : cage = 25 z_pgs_edu1 = -1.5 12._at : cage = 25 z_pgs_edu1 = 1.5 13._at : cage = 30 z_pgs_edu1 = -1.5 14._at : cage = 30 z_pgs_edu1 = 1.5 15._at : cage = 35 z_pgs_edu1 = -1.5 16._at : cage = 35 z_pgs_edu1 = 1.5 17._at : cage = 40 z_pgs_edu1 = -1.5 18._at : cage = 40 z_pgs_edu1 = 1.5 ------------------------------------------------------------------------------ | Delta-method | Margin Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _at#cohort | 1 1 | . (not estimable) 1 2 | . (not estimable) 1 3 | . (not estimable) 1 4 | . (not estimable) 2 1 | . (not estimable) 2 2 | . (not estimable) 2 3 | . (not estimable) 2 4 | . (not estimable) 3 1 | . (not estimable) 3 2 | . (not estimable) 3 3 | . (not estimable) 3 4 | . (not estimable) 4 1 | . (not estimable) 4 2 | . (not estimable) 4 3 | . (not estimable) 4 4 | . (not estimable) 5 1 | . (not estimable) 5 2 | . (not estimable) 5 3 | . (not estimable) 5 4 | . (not estimable) 6 1 | . (not estimable) 6 2 | . (not estimable) 6 3 | . (not estimable) 6 4 | . (not estimable) 7 1 | . (not estimable) 7 2 | . (not estimable) 7 3 | . (not estimable) 7 4 | . (not estimable) 8 1 | . (not estimable) 8 2 | . (not estimable) 8 3 | . (not estimable) 8 4 | . (not estimable) 9 1 | . (not estimable) 9 2 | . (not estimable) 9 3 | . (not estimable) 9 4 | . (not estimable) 10 1 | . (not estimable) 10 2 | . (not estimable) 10 3 | . (not estimable) 10 4 | . (not estimable) 11 1 | . (not estimable) 11 2 | . (not estimable) 11 3 | . (not estimable) 11 4 | . (not estimable) 12 1 | . (not estimable) 12 2 | . (not estimable) 12 3 | . (not estimable) 12 4 | . (not estimable) 13 1 | . (not estimable) 13 2 | . (not estimable) 13 3 | . (not estimable) 13 4 | . (not estimable) 14 1 | . (not estimable) 14 2 | . (not estimable) 14 3 | . (not estimable) 14 4 | . (not estimable) 15 1 | . (not estimable) 15 2 | . (not estimable) 15 3 | . (not estimable) 15 4 | . (not estimable) 16 1 | . (not estimable) 16 2 | . (not estimable) 16 3 | . (not estimable) 16 4 | . (not estimable) 17 1 | . (not estimable) 17 2 | . (not estimable) 17 3 | . (not estimable) 17 4 | . (not estimable) 18 1 | . (not estimable) 18 2 | . (not estimable) 18 3 | . (not estimable) 18 4 | . (not estimable) ------------------------------------------------------------------------------
Comment