Hello everyone,
I'm having a bit of trouble using Monte Carlo permutation tests in conjunction with the metareg command, in an analysis of CCT program characteristics on effect sizes for education attendance under 27 program studies. Each time i run the spec it produces a different set of unadjusted and adjusted p-values. Running the spec in regression (4) three times with the permutation command gives the following results below. Each time the values are different; the unadjusted p values differ and don't match those in regression 4, the adjusted p values are different each time, and some are 0. How are these results to be interpreted?
Code for reg 4 then permutation test:
metareg primaryattendanceef Comp_Cat meets2 pnet yrs_treatment mother national mbimonthly primsub2015 condachiev supply, wsse(primaryattendancese)
metareg primaryattendanceef Comp_Cat meetses pnet yrs_treatment mother national mbimonthly primsub2015 condachiev supply, wsse(primaryattendancese) permute(27, joint(Comp_Cat meetses pnet yrs_treatment mother national mbimonthly primsub2015 condachiev supply))
Number of obs = 27
Permutations = 27
------------------------------------
| P
primarya~f | Unadjusted Adjusted
-------------+----------------------
Comp_Cat | 0.037 0.037
meetses | 0.667 1.000
pnet | 0.000 0.000
yrs_trea~t | 0.815 1.000
mother | 0.259 0.963
national | 0.037 0.370
mbimonthly | 0.185 0.889
prims~2015 | 0.111 0.704
condachiev | 0.778 1.000
supply | 0.000 0.000
-------------+----------------------
joint1 | 0.000
------------------------------------
largest Monte Carlo SE(P) = 0.0929
Number of obs = 27
Permutations = 27
------------------------------------
| P
primarya~f | Unadjusted Adjusted
-------------+----------------------
Comp_Cat | 0.000 0.037
meetses | 0.741 1.000
pnet | 0.000 0.037
yrs_trea~t | 0.741 1.000
mother | 0.593 0.926
national | 0.074 0.444
mbimonthly | 0.296 0.852
prims~2015 | 0.185 0.630
condachiev | 0.593 1.000
supply | 0.000 0.037
-------------+----------------------
joint1 | 0.000
------------------------------------
largest Monte Carlo SE(P) = 0.0956
Number of obs = 27
Permutations = 27
------------------------------------
| P
primarya~f | Unadjusted Adjusted
-------------+----------------------
Comp_Cat | 0.000 0.148
meetses | 0.704 1.000
pnet | 0.000 0.111
yrs_trea~t | 0.815 1.000
mother | 0.296 0.963
national | 0.074 0.519
mbimonthly | 0.333 0.889
prims~2015 | 0.148 0.667
condachiev | 0.519 1.000
supply | 0.037 0.037
-------------+----------------------
joint1 | 0.000
------------------------------------
largest Monte Carlo SE(P) = 0.0962
Metareg primary Independent variable = primary attendance effect size
I'm having a bit of trouble using Monte Carlo permutation tests in conjunction with the metareg command, in an analysis of CCT program characteristics on effect sizes for education attendance under 27 program studies. Each time i run the spec it produces a different set of unadjusted and adjusted p-values. Running the spec in regression (4) three times with the permutation command gives the following results below. Each time the values are different; the unadjusted p values differ and don't match those in regression 4, the adjusted p values are different each time, and some are 0. How are these results to be interpreted?
Code for reg 4 then permutation test:
metareg primaryattendanceef Comp_Cat meets2 pnet yrs_treatment mother national mbimonthly primsub2015 condachiev supply, wsse(primaryattendancese)
metareg primaryattendanceef Comp_Cat meetses pnet yrs_treatment mother national mbimonthly primsub2015 condachiev supply, wsse(primaryattendancese) permute(27, joint(Comp_Cat meetses pnet yrs_treatment mother national mbimonthly primsub2015 condachiev supply))
Number of obs = 27
Permutations = 27
------------------------------------
| P
primarya~f | Unadjusted Adjusted
-------------+----------------------
Comp_Cat | 0.037 0.037
meetses | 0.667 1.000
pnet | 0.000 0.000
yrs_trea~t | 0.815 1.000
mother | 0.259 0.963
national | 0.037 0.370
mbimonthly | 0.185 0.889
prims~2015 | 0.111 0.704
condachiev | 0.778 1.000
supply | 0.000 0.000
-------------+----------------------
joint1 | 0.000
------------------------------------
largest Monte Carlo SE(P) = 0.0929
Number of obs = 27
Permutations = 27
------------------------------------
| P
primarya~f | Unadjusted Adjusted
-------------+----------------------
Comp_Cat | 0.000 0.037
meetses | 0.741 1.000
pnet | 0.000 0.037
yrs_trea~t | 0.741 1.000
mother | 0.593 0.926
national | 0.074 0.444
mbimonthly | 0.296 0.852
prims~2015 | 0.185 0.630
condachiev | 0.593 1.000
supply | 0.000 0.037
-------------+----------------------
joint1 | 0.000
------------------------------------
largest Monte Carlo SE(P) = 0.0956
Number of obs = 27
Permutations = 27
------------------------------------
| P
primarya~f | Unadjusted Adjusted
-------------+----------------------
Comp_Cat | 0.000 0.148
meetses | 0.704 1.000
pnet | 0.000 0.111
yrs_trea~t | 0.815 1.000
mother | 0.296 0.963
national | 0.074 0.519
mbimonthly | 0.333 0.889
prims~2015 | 0.148 0.667
condachiev | 0.519 1.000
supply | 0.037 0.037
-------------+----------------------
joint1 | 0.000
------------------------------------
largest Monte Carlo SE(P) = 0.0962
Metareg primary Independent variable = primary attendance effect size
VARIABLES | (1) | (2) | (3) | (4) |
Compliance Severity | 0.003 | 0.016** | 0.017** | 0.018*** |
(0.007) | (0.007) | (0.006) | (0.005) | |
LAC dummy | 0.008 | 0.012 | ||
(0.027) | (0.020) | |||
Africa dummy | -0.008 | |||
(0.037) | ||||
Meets evidence standards | -0.021 | -0.022 | -0.019 | |
(0.036) | (0.033) | (0.026) | ||
Baseline enrolment | -0.343*** | -0.337*** | -0.330*** | |
(0.105) | (0.098) | (0.086) | ||
Years of exposure | -0.001 | -0.001 | -0.001 | |
(0.005) | (0.004) | (0.003) | ||
Mother dummy | -0.002 | -0.002 | 0.005 | |
(0.025) | (0.023) | (0.018) | ||
National dummy | -0.033 | -0.034* | -0.035* | |
(0.020) | (0.019) | (0.017) | ||
Start-up dummy | -0.002 | -0.001 | ||
(0.021) | (0.018) | |||
Payment frequency | 0.008 | 0.004 | 0.013 | |
(0.032) | (0.025) | (0.018) | ||
Average transfer | 0.000 | 0.000 | 0.000 | |
(0.000) | (0.000) | (0.000) | ||
Achievement conditionality | 0.001 | 0.001 | -0.001 | |
(0.023) | (0.021) | (0.019) | ||
Supply component | 0.060** | 0.061** | 0.070*** | |
(0.023) | (0.022) | (0.017) | ||
Constant | 0.028 | 0.320*** | 0.312*** | 0.294*** |
(0.021) | (0.100) | (0.093) | (0.087) | |
Observations | 27 | 27 | 27 | 27 |
Standard errors in parentheses | ||||
*** p<0.01, ** p<0.05, * p<0.1 |
Comment