Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • post-estimation tests after OLS with standard errors clustered at the country level

    Hi All,

    I am running a regression with dependant variable happiness and independent variables are various individual-level and country-level variables. I have 30 countries and due to collinearity with the macro variables, I have grouped the countries into regions. I also cluster the standard errors at country level. After the regression I ran linktest and estat ovtest and they are significant (p-value = 0.000), suggesting that the null hypothesis of no omitted variable or misspecification can be rejected. I am a bit surprised with the results as I have used the quite similar model on one country but only individual-level variables and it was alright according to these tests. I am not sure whether there may be a mistake with the way I clustered the standard errors? Or these test are not appropriate when I have clustered errors? Please if anyone can give any feedback.

    . regress HappinessTenGroups female Age agesq Divorced Widowed Single HaveChildren Urban Secondary Tertiar
    > y ShortUnemployed LongUnemployed Retired Homemaker Student Other Good Fair Bad Verybad SecondQuartile Thr
    > idQuartile Fourthquartile IncomeNotReported GDPcapitaLOG GDPgrowthannual Unemploymenttotaloftotal Inflati
    > onconsumerpricesannu ControlofCorruptionEstimate VoiceandAccountability PeopleTrust EU15 A10 NewEntrants
    > if Wave==2, cluster (Y11_Country)

    Linear regression Number of obs = 33,696
    F(28, 29) = .
    Prob > F = .
    R-squared = 0.2665
    Root MSE = 1.6489

    (Std. Err. adjusted for 30 clusters in Y11_Country)

    Robust
    HappinessTenGroups Coef. Std. Err. t P>t [95% Conf. Interval]

    female .1166555 .0211694 5.51 0.000 .0733592 .1599519
    Age -.0472745 .0048993 -9.65 0.000 -.0572947 -.0372543
    agesq .0004908 .0000489 10.04 0.000 .0003907 .0005908
    Divorced -.8107275 .0615956 -13.16 0.000 -.9367046 -.6847504
    Widowed -.8226137 .0428381 -19.20 0.000 -.9102274 -.7350001
    Single -.5200787 .0459098 -11.33 0.000 -.6139747 -.4261827
    HaveChildren .057797 .0145225 3.98 0.000 .0280952 .0874989
    Urban -.0081242 .0287305 -0.28 0.779 -.0668848 .0506363
    Secondary .1397538 .0602732 2.32 0.028 .0164813 .2630263
    Tertiary .2091507 .0704919 2.97 0.006 .0649786 .3533227
    ShortUnemployed -.4204632 .087762 -4.79 0.000 -.5999567 -.2409696
    LongUnemployed -.5808111 .1199096 -4.84 0.000 -.8260537 -.3355684
    Retired .0994038 .0496802 2.00 0.055 -.0022036 .2010112
    Homemaker .0125494 .0591562 0.21 0.833 -.1084386 .1335375
    Student .2840124 .0571309 4.97 0.000 .1671666 .4008582
    Other -.0318354 .0604765 -0.53 0.603 -.1555237 .0918529
    Good -.4908626 .0334783 -14.66 0.000 -.5593334 -.4223917
    Fair -.9904155 .0477664 -20.73 0.000 -1.088109 -.8927222
    Bad -1.875238 .061113 -30.68 0.000 -2.000228 -1.750248
    Verybad -2.940311 .122485 -24.01 0.000 -3.190821 -2.689801
    SecondQuartile .3019176 .0483881 6.24 0.000 .2029528 .4008823
    ThridQuartile .395378 .0615345 6.43 0.000 .2695257 .5212302
    Fourthquartile .547845 .0756035 7.25 0.000 .3932185 .7024716
    IncomeNotReported .3191297 .051822 6.16 0.000 .2131417 .4251176
    GDPcapitaLOG .1208351 .1860239 0.65 0.521 -.2596266 .5012968
    GDPgrowthannual .0414192 .0205828 2.01 0.054 -.0006773 .0835158
    Unemploymenttotaloftotal -.0163014 .0078012 -2.09 0.046 -.0322566 -.0003461
    Inflationconsumerpricesannu -.0174284 .0239972 -0.73 0.473 -.0665082 .0316514
    ControlofCorruptionEstimate .2523979 .1193416 2.11 0.043 .008317 .4964788
    VoiceandAccountability .3545206 .4847643 0.73 0.470 -.6369338 1.345975
    PeopleTrust .0980505 .0082492 11.89 0.000 .0811791 .114922
    EU15 -.2124707 .2893856 -0.73 0.469 -.8043308 .3793894
    A10 .0814843 .317972 0.26 0.800 -.5688414 .73181
    NewEntrants -.5619843 .4754771 -1.18 0.247 -1.534444 .4104755
    _cons 6.501403 1.767906 3.68 0.001 2.885629 10.11718


    . linktest

    Source SS df MS Number of obs = 33,696
    F(2, 33693) = 6176.89
    Model 33472.3736 2 16736.1868 Prob > F = 0.0000
    Residual 91290.6006 33,693 2.7094827 R-squared = 0.2683
    Adj R-squared = 0.2682
    Total 124762.974 33,695 3.70271477 Root MSE = 1.6461

    HappinessT~s Coef. Std. Err. t P>t [95% Conf. Interval]

    _hat 1.789596 .0870475 20.56 0.000 1.61898 1.960212
    _hatsq -.0565058 .0061958 -9.12 0.000 -.0686497 -.0443618
    _cons -2.695989 .3030599 -8.90 0.000 -3.289997 -2.101981

    estat ovtest

    Ramsey RESET test using powers of the fitted values of HappinessTenGroups
    Ho: model has no omitted variables
    F(3, 33658) = 54.44
    Prob > F = 0.0000





    Many thanks,
    Mirjana
Working...
X