Hi, I am relatively new to using Stata. I have a question as to how to convert quantities of crops data to kcal for each crop. For instance, For banana/banana food (crop code 741) is 48kg and I want to convert to 100 kcal per 100g and similarly I want to convert cassava to 350kcal per 100g. Any advice is would be really helpful! Thank you!
------------------ copy up to and including the previous line ------------------
Listed 100 out of 9560 observations
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input str14 HHID str20 Crop_name int Crop_code float type_quan_crop "1021000108" "Banana food" 741 48 "1021000108" "Cassava" 630 3 "1021000113" "Beans" 210 3 "1021000113" "Dodo" 460 2 "1021000113" "Dodo" 460 10 "1021000113" "Maize" 130 1 "1021000408" "Beans" 210 2 "1021000408" "Maize" 130 1 "1021000710" "Beans" 210 3.5 "1021000710" "Maize" 130 60 "1021000807" "Banana food" 741 100 "1021000807" "Banana food" 741 30 "1021000807" "Banana food" 741 0 "1021000807" "Cassava" 630 0 "102100080803" "Banana food" 741 20 "102100080803" "Beans" 210 1 "102100080803" "Maize" 130 0 "102100080803" "Groundnuts" 310 2 "102100080803" "Maize" 130 0 "102100080803" "Cassava" 630 2 "102100080803" "Maize" 130 1.5 "102100080803" "Sweet potatoes" 620 1 "102100110201" "Beans" 210 1 "102100110201" "Groundnuts" 310 3 "102100110201" "Groundnuts" 310 2 "102100110201" "Beans" 210 1 "1021001109" "Sweet potatoes" 620 32 "1021001109" "Banana food" 741 12 "1021001109" "Cassava" 630 2 "1021001109" "Maize" 130 .5 "1021001109" "Yam" 640 4 "1021001109" "Sugarcane" 510 120 "1021001304" "Banana food" 741 4 "1021001304" "Beans" 210 4 "1021001304" "Beans" 210 10 "1021001304" "Cassava" 630 5 "1021001304" "Maize" 130 1 "1021002610" "Banana food" 741 10 "1021002610" "Sweet potatoes" 620 5 "1021002610" "Yam" 640 5 "1021002610" "Groundnuts" 310 1 "1021002610" "Maize" 130 1 "1021002610" "Sweet potatoes" 620 2 "1021002611" "Maize" 130 1 "1021002611" "Maize" 130 0 "1021002810" "Beans" 210 .5 "1021002810" "Maize" 130 2 "1033000301" "Banana food" 741 60 "1033000301" "Maize" 130 15 "1033000302" "Beans" 210 2 "1033000302" "Banana food" 741 10 "1033000302" "Beans" 210 1 "1033000303" "Maize" 130 1 "1033000303" "Banana food" 741 35 "1033000304" "Banana food" 741 40 "1033000304" "Banana beer" 742 30 "1033000304" "Beans" 210 1 "1033000304" "Maize" 130 20 "103300030403" "Banana food" 741 5 "103300030403" "Banana food" 741 6 "103300030403" "Beans" 210 1 "103300030403" "Maize" 130 .5 "1033000307" "Banana beer" 742 30 "1033000307" "Banana beer" 742 10 "1033000307" "Banana food" 741 130 "1033000308" "Maize" 130 0 "1033000308" "Beans" 210 4 "1033000308" "Irish potatoes" 610 2 "1033000308" "Maize" 130 0 "1033000309" "Banana food" 741 7 "1033000309" "Banana food" 741 30 "1033000310" "Banana food" 741 20 "1033000504" "Banana food" 741 48 "1033000504" "Beans" 210 1 "1033000504" "Maize" 130 1 "1033000504" "Beans" 210 1 "1033000505" "Banana food" 741 26 "1033000505" "Beans" 210 5 "1033000506" "Beans" 210 1 "1033000506" "Maize" 130 2 "1033000506" "Groundnuts" 310 3 "1033000506" "Irish potatoes" 610 3 "1033000507" "Beans" 210 2 "1033000507" "Cassava" 630 6 "1033000509" "Beans" 210 3 "1033000510" "Sweet potatoes" 620 2 "1033000510" "Beans" 210 4 "1033000510" "Maize" 130 1 "1033000510" "Beans" 210 4 "1033000510" "Maize" 130 6 "1033000511" "Maize" 130 0 "1033000511" "Beans" 210 1 "1033000511" "Cassava" 630 5 "1033000511" "Maize" 130 0 "1033000511" "Beans" 210 .5 "1033000511" "Maize" 130 2 "103300051102" "Banana beer" 742 18 "103300051102" "Banana food" 741 30 "1041000210" "Maize" 130 13 "1041000210" "Sweet potatoes" 620 1 end
Listed 100 out of 9560 observations
Comment