Hi everyone,
The dependent variable is "decision" take 0 for no action, 1 for equity issues, 3 for debt issues.
The main independent variable: mis_mbm1=ln(market value of equity/book value of equity)
I run the following code:
My explanation about estimated coefficients:
and about marginal effects:
Do I explain coefficients and marginal effects correctly?
I would really appreciate all the help I can get.
Best regards
The dependent variable is "decision" take 0 for no action, 1 for equity issues, 3 for debt issues.
The main independent variable: mis_mbm1=ln(market value of equity/book value of equity)
I run the following code:
Code:
. global x_list tan1 ebitda1 size1 . // Get estimated coefficients . mlogit decision mis_mbm1 $x_list, b(0) vce(cluster id) Iteration 0: log pseudolikelihood = -1656.4934 Iteration 1: log pseudolikelihood = -1612.5628 Iteration 2: log pseudolikelihood = -1612.2417 Iteration 3: log pseudolikelihood = -1612.2417 Multinomial logistic regression Number of obs = 1,644 Wald chi2(8) = 47.48 Prob > chi2 = 0.0000 Log pseudolikelihood = -1612.2417 Pseudo R2 = 0.0267 (Std. Err. adjusted for 219 clusters in id) ------------------------------------------------------------------------------ | Robust decision | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 0 | (base outcome) -------------+---------------------------------------------------------------- 1 | mis_mbm1 | .3654429 .1797999 2.03 0.042 .0130416 .7178443 tan1 | 1.896081 .7475029 2.54 0.011 .4310023 3.36116 ebitda1 | -10.41082 3.184291 -3.27 0.001 -16.65192 -4.169728 size1 | -.2413481 .0848461 -2.84 0.004 -.4076435 -.0750528 _cons | -.1678774 1.017706 -0.16 0.869 -2.162545 1.82679 -------------+---------------------------------------------------------------- 3 | mis_mbm1 | .6849597 .1390506 3.72 0.000 .2449119 .7899802 tan1 | .1355039 .4106839 0.33 0.741 -.6694218 .9404295 ebitda1 | -5.916909 2.42404 -2.44 0.015 -10.66794 -1.165878 size1 | -.3576047 .0658636 -5.43 0.000 -.486695 -.2285144 _cons | 2.31299 .6238702 3.71 0.000 1.090226 3.535753 ------------------------------------------------------------------------------ . // Get margin effects . qui mlogit decision mis_mbm1 $x_list, b(0) vce(cluster id) . eststo mlogit . foreach o in 1 3 { 2. qui margins, dydx(*) atmeans predict(outcome(`o')) post 3. eststo, title(Outcome `o') 4. estimates restore mlogit 5. } (est2 stored) (results mlogit are active now) (est3 stored) (results mlogit are active now) . eststo drop mlogit (mlogit dropped) . esttab, noobs b(3) z(3) star(* 0.10 ** 0.05 *** 0.010) mtitles nonumbers title(Average Marginal Effects) (tabulating estimates stored by eststo; specify "." to tabulate the active results) Average Marginal Effects -------------------------------------------- Outcome 1 Outcome 3 -------------------------------------------- mis_mbm1 0.025 0.112*** (1.185) (3.747) tan1 0.265*** -0.071 (2.666) (-0.874) ebitda1 -1.179*** -0.704 (-2.843) (-1.544) size1 -0.016 -0.063*** (-1.540) (-5.520) -------------------------------------------- z statistics in parentheses * p<0.10, ** p<0.05, *** p<0.010 . end of do-file
My explanation about estimated coefficients:
when there is a 10% shift in the market value relative to the book value, e.g. a rise from 1 to 1.1, the change in MIS_MBM is ln(market value/book value = 1.10) = 0.095 which is associated with an increase in the odds ratio for debt issues relative to no action of e0.685×0.095 = 1.067 (where 0.685 is the coefficient of MIS_MBM and 0.095 is the change in MIS_ MBM). This means that the odds of being a debt issue is 1.067 times (or 7.6% higher than) that of no financing alternative at all when there is a 10% increase in misvaluation
when there is a 0.095 increase in MIS_MBM, the probability of a debt issue in a certain period increases on average about 0.112×0.095 = 1.07 percentage points given all other predictor variables in the model are held constant.
I would really appreciate all the help I can get.
Best regards
Comment