Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Interpreting results from multinomial logistic model

    Hi everyone,

    The dependent variable is "decision" take 0 for no action, 1 for equity issues, 3 for debt issues.

    The main independent variable: mis_mbm1=ln(market value of equity/book value of equity)

    I run the following code:
    Code:
    . global x_list tan1 ebitda1 size1
    
    . // Get estimated coefficients 
    . mlogit decision mis_mbm1                        $x_list, b(0) vce(cluster id)
    
    Iteration 0:   log pseudolikelihood = -1656.4934  
    Iteration 1:   log pseudolikelihood = -1612.5628  
    Iteration 2:   log pseudolikelihood = -1612.2417  
    Iteration 3:   log pseudolikelihood = -1612.2417  
    
    Multinomial logistic regression                 Number of obs     =      1,644
                                                    Wald chi2(8)      =      47.48
                                                    Prob > chi2       =     0.0000
    Log pseudolikelihood = -1612.2417               Pseudo R2         =     0.0267
    
                                       (Std. Err. adjusted for 219 clusters in id)
    ------------------------------------------------------------------------------
                 |               Robust
        decision |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    0            |  (base outcome)
    -------------+----------------------------------------------------------------
    1            |
        mis_mbm1 |   .3654429   .1797999     2.03   0.042     .0130416    .7178443
            tan1 |   1.896081   .7475029     2.54   0.011     .4310023     3.36116
         ebitda1 |  -10.41082   3.184291    -3.27   0.001    -16.65192   -4.169728
           size1 |  -.2413481   .0848461    -2.84   0.004    -.4076435   -.0750528
           _cons |  -.1678774   1.017706    -0.16   0.869    -2.162545     1.82679
    -------------+----------------------------------------------------------------
    3            |
        mis_mbm1 |   .6849597   .1390506     3.72   0.000     .2449119    .7899802
            tan1 |   .1355039   .4106839     0.33   0.741    -.6694218    .9404295
         ebitda1 |  -5.916909    2.42404    -2.44   0.015    -10.66794   -1.165878
           size1 |  -.3576047   .0658636    -5.43   0.000     -.486695   -.2285144
           _cons |    2.31299   .6238702     3.71   0.000     1.090226    3.535753
    ------------------------------------------------------------------------------
    
    
    . // Get margin effects
    . qui mlogit decision mis_mbm1                        $x_list, b(0) vce(cluster id)
    
    . eststo mlogit
    
    . foreach o in 1 3 {
      2.     qui margins, dydx(*) atmeans predict(outcome(`o')) post
      3.     eststo, title(Outcome `o')
      4.     estimates restore mlogit
      5. }
    (est2 stored)
    (results mlogit are active now)
    (est3 stored)
    (results mlogit are active now)
    
    . eststo drop mlogit
    (mlogit dropped)
    
    . esttab, noobs b(3) z(3) star(* 0.10 ** 0.05 *** 0.010) mtitles nonumbers title(Average Marginal Effects)
    (tabulating estimates stored by eststo; specify "." to tabulate the active results)
    
    Average Marginal Effects
    --------------------------------------------
                    Outcome 1       Outcome 3   
    --------------------------------------------
    mis_mbm1            0.025           0.112***
                      (1.185)         (3.747)   
    
    tan1                0.265***       -0.071   
                      (2.666)        (-0.874)   
    
    ebitda1            -1.179***       -0.704   
                     (-2.843)        (-1.544)   
    
    size1              -0.016          -0.063***
                     (-1.540)        (-5.520)   
    --------------------------------------------
    z statistics in parentheses
    * p<0.10, ** p<0.05, *** p<0.010
    
    . 
    end of do-file

    My explanation about estimated coefficients:
    when there is a 10% shift in the market value relative to the book value, e.g. a rise from 1 to 1.1, the change in MIS_MBM is ln(market value/book value = 1.10) = 0.095 which is associated with an increase in the odds ratio for debt issues relative to no action of e0.685×0.095 = 1.067 (where 0.685 is the coefficient of MIS_MBM and 0.095 is the change in MIS_ MBM). This means that the odds of being a debt issue is 1.067 times (or 7.6% higher than) that of no financing alternative at all when there is a 10% increase in misvaluation
    and about marginal effects:
    when there is a 0.095 increase in MIS_MBM, the probability of a debt issue in a certain period increases on average about 0.112×0.095 = 1.07 percentage points given all other predictor variables in the model are held constant.
    Do I explain coefficients and marginal effects correctly?

    I would really appreciate all the help I can get.

    Best regards
    --------------------
    (Stata 15.1 MP)

  • #2
    when there is a 0.095 increase in MIS_MBM, the probability of a debt issue in a certain period increases on average about 0.112×0.095 = 1.07 percentage points given all other predictor variables in the model are held constant.
    should be "...given all other predictor variables in the model are held constant at their sample means."

    -mlogit- is a non-linear model, so the marginal effects change with different values of the variables. If you were to hold all the predictor variables constant at some other values, the marginal effects would be, in general, different.

    Comment


    • #3
      Thank you so much Clyde.
      --------------------
      (Stata 15.1 MP)

      Comment


      • #4
        Clyde Schechter: Dear Clyde,

        The dependent variable is "eqissu" take 0 for no action, 1 for equity issues. The main independent variable: mis_mbm1=ln(market value of equity/book value of equity).

        I run -aextlogit- to calculate average semi elasticities rather than marginal effects in -xtlogit, fe-

        Code:
        aextlogit eqissumis_mbm_fm1 tan1 ebitda1 size1
        note: multiple positive outcomes within groups encountered.
        note: 138 groups (615 obs) dropped because of all positive or
              all negative outcomes.
        
        Iteration 0:   log likelihood = -159.57945  
        Iteration 1:   log likelihood = -145.64694  
        Iteration 2:   log likelihood = -145.31023  
        Iteration 3:   log likelihood = -145.30693  
        Iteration 4:   log likelihood = -145.30693  
        
        Conditional fixed-effects logistic regression   Number of obs      =       545
        Group variable: id                              Number of groups   =        79
                                                        Obs per group: min =         2
                                                                       avg = 6.8987342
        Log likelihood  = -145.30693                                   max =        16
        
                           Average (semi) elasticities of Pr(y=1|x,u)
        ------------------------------------------------------------------------------
              eqissu |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
        -------------+----------------------------------------------------------------
             mis_mbm |   .2672099   .0555997     4.81   0.000     .1582365    .3761834
                tan1 |    .773218    .213595     3.62   0.000     .3545795    1.191856
             ebitda1 |   2.073535    .986045     2.10   0.035     .1409224    4.006148
               size1 |  -.1188548   .0438158    -2.71   0.007    -.2047321   -.0329774
        ------------------------------------------------------------------------------
        My explanation about average semi elasticities:
        when there is a 1% increase in MIS_MBM, on average the probability of being equity issues goes up by 26.7%.
        Do I explain the economic significance of average semi elasticities correctly?

        I would really appreciate all the help I can get.

        Best regards
        --------------------
        (Stata 15.1 MP)

        Comment

        Working...
        X