Hi,
I am relatively new to using STATA and I have a question regarding the data that I have when running a logistic regression model. The data is duplicated for HHID "102100110201" and others in the dataset after merging various datasets together. I am think this may affect the results of the logistic regression model? For instance, there are two children in one household and when I merged the total_quan data, it appears twice when merged. Is there anyway to fix this problem? Thank you for any advice!
------------------ copy up to and including the previous line ------------------
Listed 100 out of 3627 observations
Use the count() option to list more
.
I am relatively new to using STATA and I have a question regarding the data that I have when running a logistic regression model. The data is duplicated for HHID "102100110201" and others in the dataset after merging various datasets together. I am think this may affect the results of the logistic regression model? For instance, there are two children in one household and when I merged the total_quan data, it appears twice when merged. Is there anyway to fix this problem? Thank you for any advice!
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input str14 HHID double(total_hhmembers total_quan) byte child_age "1013000201" 6 . . "1013000204" 3 1.5 31 "1013000206" 1 . . "1013000210" 1 . . "1013000213" 1 . . "101300021302" 4 . . "1021000102" 5 . . "1021000108" 4 . . "1021000109" 5 . . "1021000110" 6 . . "1021000111" 8 . . "1021000113" 4 19 32 "1021000201" 5 . . "1021000202" 1 . . "1021000203" 9 . . "102100020304" 4 . . "1021000207" 3 . . "1021000209" 1 . . "1021000210" 1 . . "1021000212" 4 . . "1021000213" 8 . . "1021000303" 1 . . "1021000310" 1 . . "1021000312" 3 . . "1021000313" 1 . . "1021000401" 1 . . "1021000402" 3 . . "1021000405" 4 . . "102100040502" 5 . . "102100040504" 3 . . "1021000406" 5 . . "102100040606" 1 . . "1021000408" 7 . . "1021000409" 2 . . "1021000501" 1 . . "1021000503" 1 . . "1021000504" 4 . . "1021000506" 5 . . "1021000604" 8 . . "1021000607" 8 . . "1021000608" 4 . . "1021000610" 7 . . "1021000612" 6 . . "1021000701" 6 . . "1021000702" 3 . . "1021000703" 1 . . "102100070302" 2 . . "1021000705" 2 . . "1021000709" 8 . . "1021000710" 13 . . "1021000711" 5 . . "1021000802" 1 . . "1021000803" 1 . . "1021000805" 1 . . "102100080503" 1 . . "1021000807" 2 . . "1021000808" 2 . . "102100080803" 5 52 42 "1021000809" 2 . . "1021000810" 2 . . "1021000811" 5 . . "1021000904" 6 . . "1021000906" 2 . . "1021000909" 3 . . "1021001003" 6 . . "1021001004" 4 . . "1021001005" 5 . . "1021001007" 6 . . "1021001008" 4 . . "1021001009" 2 . . "1021001011" 1 . . "1021001102" 1 . . "102100110201" 7 7 7 "102100110201" 7 7 47 "1021001105" 1 . . "1021001107" 10 . . "1021001109" 12 . . "102100110901" 0 . . "102100110903" 3 . . "102100110904" 3 . . "1021001110" 1 . . "1021001205" 11 . . "1021001206" 3 . . "1021001208" 7 . . "1021001210" 4 . . "1021001211" 2 . . "1021001301" 4 . . "1021001302" 5 . . "1021001304" 8 52.5 50 "1021001304" 8 52.5 27 "1021001305" 3 . . "1021001306" 3 . . "1021001307" 4 . . "1021001308" 2 . . "1021001309" 1 . . "1021001311" 4 . . "1021001402" 2 . . "102100140202" 2 . . "102100140204" 1 . . "1021001403" 3 . . end
Listed 100 out of 3627 observations
Use the count() option to list more
.
Comment