Good morning users!
I have an issue and I hope you could help me: I have a panel dataset, I am interested to study how people adjust their risk aversion during financial crisis. I have a categorical variable (riskavers) which can have three different values (1=not taking any financial risk, 2=willing to take a medium risk, 3=willing to take a great risk). However, I do not know which model can capture better its relationship with the dummy variable "crisis". Here I posted a multinomial logit regression (even though I am not completely sure I can use it in a panel dataset as a pooled estimation) and the xtreg command. Can you please help me to decide which one is better or if I should use another one?
Thank you so much
Luke Brown
I have an issue and I hope you could help me: I have a panel dataset, I am interested to study how people adjust their risk aversion during financial crisis. I have a categorical variable (riskavers) which can have three different values (1=not taking any financial risk, 2=willing to take a medium risk, 3=willing to take a great risk). However, I do not know which model can capture better its relationship with the dummy variable "crisis". Here I posted a multinomial logit regression (even though I am not completely sure I can use it in a panel dataset as a pooled estimation) and the xtreg command. Can you please help me to decide which one is better or if I should use another one?
Thank you so much
Luke Brown
Code:
xtreg riskavers hhsex age educ race logsaving crisis logincome, vce(cluster YY1) Random-effects GLS regression Number of obs = 31879 Group variable: YY1 Number of groups = 6551 R-sq: within = 0.2245 Obs per group: min = 1 between = 0.2259 avg = 4.9 overall = 0.2260 max = 6 Wald chi2(7) = 11592.78 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 (Std. Err. adjusted for 6551 clusters in YY1) ------------------------------------------------------------------------------ | Robust riskavers | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- hhsex | -.0983859 .007495 -13.13 0.000 -.1130758 -.083696 age | -.0046486 .0001839 -25.27 0.000 -.005009 -.0042881 educ | .0414245 .0010909 37.97 0.000 .0392863 .0435627 race | -.0267025 .0031038 -8.60 0.000 -.0327859 -.0206191 logsaving | .0056858 .0005938 9.57 0.000 .0045219 .0068497 crisis | -.0392017 .0055675 -7.04 0.000 -.0501137 -.0282897 logincome | .0899202 .0021053 42.71 0.000 .0857939 .0940464 _cons | .6533855 .0272177 24.01 0.000 .6000397 .7067313 -------------+---------------------------------------------------------------- sigma_u | .05883202 sigma_e | .48710283 rho | .01437794 (fraction of variance due to u_i) ------------------------------------------------------------------------------
Code:
mlogit riskavers hhsex age educ race logsaving crisis logincome, baseoutcome(1) vce(cluster YY1) Iteration 0: log pseudolikelihood = -26224.432 Iteration 1: log pseudolikelihood = -21636.01 Iteration 2: log pseudolikelihood = -21376.921 Iteration 3: log pseudolikelihood = -21374.942 Iteration 4: log pseudolikelihood = -21374.941 Multinomial logistic regression Number of obs = 31879 Wald chi2(14) = 5973.95 Prob > chi2 = 0.0000 Log pseudolikelihood = -21374.941 Pseudo R2 = 0.1849 (Std. Err. adjusted for 6551 clusters in YY1) ------------------------------------------------------------------------------ | Robust riskavers | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 1 | (base outcome) -------------+---------------------------------------------------------------- 2 | hhsex | -.3511427 .0340069 -10.33 0.000 -.417795 -.2844904 age | -.020097 .0008849 -22.71 0.000 -.0218314 -.0183627 educ | .2007731 .0058042 34.59 0.000 .189397 .2121492 race | -.173934 .0142654 -12.19 0.000 -.2018938 -.1459743 logsaving | .0406524 .0033108 12.28 0.000 .0341633 .0471415 crisis | -.2012526 .0283804 -7.09 0.000 -.2568771 -.1456281 logincome | .5681068 .015723 36.13 0.000 .5372903 .5989234 _cons | -6.04118 .18116 -33.35 0.000 -6.396247 -5.686113 -------------+---------------------------------------------------------------- 3 | hhsex | -.3277998 .0828562 -3.96 0.000 -.4901949 -.1654046 age | -.0365087 .0021477 -17.00 0.000 -.0407182 -.0322993 educ | .1516283 .0124127 12.22 0.000 .1272998 .1759568 race | -.0236554 .026387 -0.90 0.370 -.0753731 .0280622 logsaving | -.0086072 .0064052 -1.34 0.179 -.0211612 .0039468 crisis | -.183439 .0579029 -3.17 0.002 -.2969265 -.0699515 logincome | .7799633 .0246435 31.65 0.000 .7316628 .8282637 _cons | -9.82149 .2998162 -32.76 0.000 -10.40912 -9.233861 ------------------------------------------------------------------------------
Comment