Hi All,
I am new to the forum, so please let me know if I am not formatting my request properly, and I'll be happy to make the appropriate changes. I am having problems running an event-study in Stata with two-dimensional fixed-effects.
I have a panel of firms and year, with a shock (i.e., a change in a law) occurring in a staggered fashion to several groups of firms, so that by the end of the sample period all the firms are eventually treated. I am trying to run an event study, where the dependent variable "y" is regressed on firm and year dummies, plus a set of dummies to check for the absence of a pre-trend. For example, dumm5 is equal to 1 form firm i in year t if the shock to firm i occurred in year t-5. dumm_1 is omitted, so that all the remaining dummies should all be identified. Indeed, if I use "areg", this is my output:
If I use instead "reghdfe", I get the following output, with one dummy omitted:
If I cluster by firm, the problem seems to appear also with "areg". I would like to use "reghdfe", as I am planning to use multi-dimensional fixed-effects, but I would really like to plot all the coefficients, with just dumm_1 normalized to 0.
Vincenzo
I am new to the forum, so please let me know if I am not formatting my request properly, and I'll be happy to make the appropriate changes. I am having problems running an event-study in Stata with two-dimensional fixed-effects.
I have a panel of firms and year, with a shock (i.e., a change in a law) occurring in a staggered fashion to several groups of firms, so that by the end of the sample period all the firms are eventually treated. I am trying to run an event study, where the dependent variable "y" is regressed on firm and year dummies, plus a set of dummies to check for the absence of a pre-trend. For example, dumm5 is equal to 1 form firm i in year t if the shock to firm i occurred in year t-5. dumm_1 is omitted, so that all the remaining dummies should all be identified. Indeed, if I use "areg", this is my output:
Code:
. areg y dumm* i.year,absorb(id) note: 151.year omitted because of collinearity Linear regression, absorbing indicators Number of obs = 42928 F( 42, 40192) = 33.09 Prob > F = 0.0000 R-squared = 0.4961 Adj R-squared = 0.4618 Root MSE = 4.2764 y Coef. Std. Err. t P>t [95% Conf. Interval] dumm_13 -.1311646 .2493519 -0.53 0.599 -.6199 .3575709 dumm_12 -.0774617 .2734669 -0.28 0.777 -.6134632 .4585397 dumm_11 .4890132 .254919 1.92 0.055 -.0106338 .9886602 dumm_10 .3322305 .2209377 1.50 0.133 -.1008124 .7652734 dumm_9 -.5587808 .1927939 -2.90 0.004 -.9366612 -.1809004 dumm_8 -.4640176 .1665719 -2.79 0.005 -.7905024 -.1375329 dumm_7 -.3920493 .1746904 -2.24 0.025 -.7344464 -.0496522 dumm_6 -.1567121 .157182 -1.00 0.319 -.4647924 .1513682 dumm_5 -.5046396 .1608119 -3.14 0.002 -.8198345 -.1894446 dumm_4 -.368474 .1597363 -2.31 0.021 -.6815608 -.0553872 dumm_3 -.0716386 .156353 -0.46 0.647 -.378094 .2348167 dumm_2 .0561017 .1523417 0.37 0.713 -.2424917 .354695 dumm0 .4193639 .1537777 2.73 0.006 .117956 .7207718 dumm1 .5340008 .1590671 3.36 0.001 .2222257 .845776 dumm2 .7855772 .1642925 4.78 0.000 .46356 1.107594 dumm3 .7899929 .1661612 4.75 0.000 .4643131 1.115673 dumm4 1.059333 .1614825 6.56 0.000 .7428234 1.375842 dumm5 1.072899 .177329 6.05 0.000 .7253299 1.420468 dumm6 1.053102 .1719503 6.12 0.000 .7160757 1.390129 dumm7 1.441002 .2046819 7.04 0.000 1.03982 1.842183 dumm8 1.874835 .208242 9.00 0.000 1.466676 2.282994 dumm9 1.725453 .2102388 8.21 0.000 1.31338 2.137526 dumm10 1.567202 .2219407 7.06 0.000 1.132193 2.002211 dumm11 1.597698 .2245723 7.11 0.000 1.157531 2.037865 year 133 .6652159 .1650878 4.03 0.000 .34164 .9887917 134 .9618773 .1680508 5.72 0.000 .6324939 1.291261 135 1.852587 .1598002 11.59 0.000 1.539375 2.1658 136 .2299018 .1518721 1.51 0.130 -.067771 .5275745 137 .675096 .1426957 4.73 0.000 .3954092 .9547828 138 1.024808 .1567313 6.54 0.000 .7176108 1.332005 139 1.730319 .1593536 10.86 0.000 1.417982 2.042656 140 -.3696904 .1602825 -2.31 0.021 -.6838479 -.055533 141 .1468877 .159575 0.92 0.357 -.165883 .4596584 142 .3556635 .1622465 2.19 0.028 .0376567 .6736703 143 .9430713 .1662872 5.67 0.000 .6171446 1.268998 144 -1.238555 .1682256 -7.36 0.000 -1.568281 -.9088292 145 -.6601735 .1676607 -3.94 0.000 -.9887924 -.3315547 146 -.035841 .1550907 -0.23 0.817 -.3398224 .2681404 147 .4189803 .1750731 2.39 0.017 .0758329 .7621277 148 -1.994363 .1807396 -11.03 0.000 -2.348617 -1.64011 149 -1.386854 .1809851 -7.66 0.000 -1.741589 -1.032119 150 -.6422426 .1771769 -3.62 0.000 -.9895135 -.2949718 151 0 (omitted) _cons 3.724768 .1627825 22.88 0.000 3.405711 4.043826 id F(2693, 40192) = 14.192 0.000 (2694 categories)
If I use instead "reghdfe", I get the following output, with one dummy omitted:
Code:
. reghdfe y dumm*,absorb(id year) (dropped 32 singleton observations) (converged in 7 iterations) note: dumm11 omitted because of collinearity HDFE Linear regression Number of obs = 42,896 Absorbing 2 HDFE groups F( 23, 40192) = 6.36 Prob > F = 0.0000 R-squared = 0.4957 Adj R-squared = 0.4618 Within R-sq. = 0.0036 Root MSE = 4.2764 y Coef. Std. Err. t P>t [95% Conf. Interval] dumm_13 1.466534 .4071696 3.60 0.000 .6684718 2.264596 dumm_12 1.387095 .3852358 3.60 0.000 .6320241 2.142166 dumm_11 1.820428 .3539591 5.14 0.000 1.12666 2.514196 dumm_10 1.530504 .3209338 4.77 0.000 .9014666 2.159542 dumm_9 .5063514 .289606 1.75 0.080 -.0612831 1.073986 dumm_8 .467973 .2621949 1.78 0.074 -.045935 .981881 dumm_7 .4067998 .241348 1.69 0.092 -.0662477 .8798474 dumm_6 .5089955 .2089094 2.44 0.015 .0995282 .9184628 dumm_5 .0279265 .2011369 0.14 0.890 -.3663064 .4221594 dumm_4 .0309506 .1886372 0.16 0.870 -.3387826 .4006837 dumm_3 .1946444 .1742638 1.12 0.264 -.1469167 .5362055 dumm_2 .1892432 .1597645 1.18 0.236 -.1238989 .5023852 dumm0 .2862224 .1483983 1.93 0.054 -.0046418 .5770865 dumm1 .2677178 .1493352 1.79 0.073 -.0249827 .5604183 dumm2 .3861526 .1534018 2.52 0.012 .0854816 .6868236 dumm3 .2574268 .15638 1.65 0.100 -.0490816 .5639352 dumm4 .3936252 .156271 2.52 0.012 .0873305 .6999199 dumm5 .2740497 .1686489 1.62 0.104 -.056506 .6046055 dumm6 .1211116 .1572343 0.77 0.441 -.1870713 .4292945 dumm7 .3758694 .2076184 1.81 0.070 -.0310674 .7828061 dumm8 .6765613 .2160116 3.13 0.002 .2531736 1.099949 dumm9 .3940382 .2207188 1.79 0.074 -.0385758 .8266522 dumm10 .1026452 .2301371 0.45 0.656 -.3484288 .5537192 dumm11 0 (omitted) Absorbed F(2680, 40192) = 14.534 0.000 (Joint test) Absorbed degrees of freedom: Absorbed FE Num. Coefs. = Categories - Redundant id 2662 2662 0 year 19 20 1
Vincenzo
Comment