Hello everybody,
I investigating on the effect that the financial crisis had on investment choices, to do so I created an unbalanced panel and I carried out a ramdom effect, fixed effect and pooled logistic regression. While Hausman test suggests me to use ramdom effect model, its sigma and rho_u values seem to suggest that it is not a good model for my research. I wanted to use the ramdom effect model because it takes into account the differences between individual study effects, and it may capture the heterogeneity of the individuals since my data are taken from a survey.
Should I just use the pooled logistic?
Thank you in advance for your great help!
I investigating on the effect that the financial crisis had on investment choices, to do so I created an unbalanced panel and I carried out a ramdom effect, fixed effect and pooled logistic regression. While Hausman test suggests me to use ramdom effect model, its sigma and rho_u values seem to suggest that it is not a good model for my research. I wanted to use the ramdom effect model because it takes into account the differences between individual study effects, and it may capture the heterogeneity of the individuals since my data are taken from a survey.
Should I just use the pooled logistic?
Code:
logistic hequity hhsex age age2 educ race logincome crisis
Code:
xtlogit hequity hhsex age age2 educ race logincome crisis, re
Code:
xtlogit hequity hhsex age age2 educ race logincome crisis, fe
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input byte(hequity hhsex age) float age2 byte(educ race) float(logincome logsaving crisis) 1 1 47 2209 9 1 11.84469 8.276157 0 1 1 45 2025 13 3 14.321605 0 0 1 1 47 2209 8 3 11.05272 0 0 1 1 75 5625 9 1 11.228642 7.34437 1 0 1 54 2916 6 1 9.948541 0 1 0 2 71 5041 10 1 9.485262 0 1 0 2 79 6241 8 1 9.227393 8.916195 0 1 1 52 2704 13 1 12.878615 0 0 1 1 56 3136 14 1 14.69328 0 0 1 2 59 3481 12 1 10.55031 10.409096 1 0 1 22 484 11 1 10.04385 6.938386 1 0 1 20 400 8 3 10.011355 0 1 1 1 47 2209 14 1 12.953252 7.211447 0 1 1 56 3136 12 1 15.388215 12.22335 0 1 1 50 2500 5 1 11.571064 7.970753 0 0 2 94 8836 4 1 9.796537 0 1 0 1 53 2809 8 1 10.904053 0 1 1 1 30 900 9 1 11.629843 8.006368 1 1 1 58 3364 14 1 15.26895 0 0 1 1 60 3600 11 1 11.718127 0 0 1 1 61 3721 9 1 12.176177 9.000373 0 0 1 63 3969 9 1 11.4666 7.270262 1 1 1 48 2304 14 1 11.956755 7.120708 1 1 2 33 1089 8 3 10.657982 5.298317 1 1 1 65 4225 8 1 10.606814 7.596709 0 1 1 39 1521 8 3 10.863712 0 0 0 1 26 676 5 3 10.414632 7.054462 0 0 1 50 2500 9 1 11.341437 4.705313 1 1 1 57 3249 12 1 11.463668 0 1 1 1 41 1681 13 1 11.6477 8.935904 1 1 1 47 2209 13 1 15.382746 0 0 1 1 76 5776 6 1 13.049764 0 0 1 1 62 3844 12 1 11.717156 0 0 0 1 23 529 7 2 9.275241 5.929089 1 1 2 63 3969 8 1 10.418545 0 1 0 2 25 625 8 1 9.628363 0 1 1 1 39 1521 13 1 15.56797 0 0 0 1 63 3969 8 1 12.200226 8.246787 0 1 1 79 6241 12 1 13.936782 0 0 1 1 68 4624 13 1 12.337154 6.868636 1 1 1 46 2116 14 1 11.996234 7.274858 1 1 1 29 841 13 1 11.063447 9.740969 1 0 1 79 6241 3 1 10.417573 7.211447 0 0 1 35 1225 2 3 10.43293 0 0 0 1 49 2401 8 1 11.582237 6.361315 0 1 1 53 2809 8 1 10.391245 6.497073 1 1 1 35 1225 12 1 10.904053 7.274858 1 0 2 30 900 6 2 10.21615 0 1 1 1 49 2401 12 1 12.537836 9.003206 0 1 1 57 3249 14 1 15.026494 0 0 1 1 65 4225 13 4 11.03367 0 0 1 1 42 1764 12 1 11.393396 9.715948 1 1 2 31 961 9 2 10.248646 5.798952 1 1 1 21 441 9 1 9.753526 9.159047 1 1 1 32 1024 11 1 11.583324 7.904594 0 0 1 54 2916 9 1 11.333716 8.629779 0 0 2 40 1600 2 1 9.855016 0 0 1 2 72 5184 12 1 10.55031 0 1 0 1 32 1024 4 1 10.690478 0 1 0 2 48 2304 11 1 10.657982 6.802395 1 1 1 68 4624 12 1 15.565552 0 0 1 1 74 5476 12 1 13.422875 8.534469 0 1 1 54 2916 13 1 15.65789 0 0 1 1 67 4489 14 3 12.276222 0 1 1 1 50 2500 8 1 11.625637 0 1 1 1 62 3844 8 4 10.76833 7.313221 1 0 1 47 2209 8 3 12.282944 0 0 1 1 33 1089 13 1 10.43293 6.7915 0 0 1 30 900 9 3 11.256814 2.4492924 0 0 1 56 3136 8 1 10.91577 2.402728 1 1 1 54 2916 13 1 11.5972 9.0425205 1 0 2 83 6889 10 1 9.405219 0 1 1 1 76 5776 9 1 13.822928 0 0 1 1 72 5184 13 1 14.697233 0 0 1 1 33 1089 12 1 11.76456 9.133904 0 0 1 63 3969 12 1 10.579297 3.095875 1 0 1 28 784 8 2 10.82401 0 1 0 1 37 1369 6 1 8.529751 0 1 0 1 56 3136 13 1 9.724425 0 0 0 2 74 5476 8 2 10.352887 0 0 1 1 77 5929 8 1 10.532414 7.524466 0 1 2 50 2500 12 1 10.89515 5.803926 1 1 1 49 2401 12 1 11.463668 7.931638 1 1 1 45 2025 12 3 11.665245 10.434115 1 1 1 41 1681 12 1 12.12232 7.904594 0 0 1 27 729 9 1 10.310328 0 0 0 1 62 3844 9 1 9.385013 0 0 0 1 53 2809 12 1 9.264659 0 1 1 1 68 4624 13 1 14.107424 0 1 1 1 68 4624 8 1 11.48466 10.106428 1 1 1 58 3364 11 1 12.363482 9.919497 0 1 1 51 2601 9 1 11.364488 10.33865 0 0 1 43 1849 8 1 10.301303 7.74761 0 1 1 85 7225 12 1 12.034584 0 1 0 1 76 5776 13 1 14.175375 0 1 1 1 45 2025 12 4 13.79864 11.418614 1 1 2 29 841 12 1 10.90308 6.295156 0 0 1 30 900 12 3 10.936033 0 0 0 1 49 2401 4 1 8.8741865 0 0 0 2 87 7569 8 1 9.508856 0 1 end
Comment