Hello,
I've been having some doubts regarding this subject, my professor has given me and my class some exercises to do regarding VAR, VEC, cointegration etc, he gives each student the a particular set of data and posed a few questions, one of them he tells us to find whether or not the 3 series he gave us were cointegrated, for that I did:
From that test I concluded that there were no cointegration, the following questions assume that the student found cointegration between the series, so my professor said that those who didn't find any cointegration should do the following questions "as if" they had found one cointegration vector. The question was to "test whether or not the cointegration vector of Y, ER and M could be [1, -1, 1], so I did the following:
I understand that the foot note tells me that I cannot reject the null hypothesis that the coefficients are equal to 1, -1 and 1, since the p-value is 0.164, so that would mean that the cointegration vector is [1, -1, 1], but like I said above, the Johansen tests told me that there was no cointegration whatsoever, that makes no sense to me! Shouldn't I be able to reject the null? Could anyone tell me what i'm doing wrong? Am I completely off here?
Thank you!
I've been having some doubts regarding this subject, my professor has given me and my class some exercises to do regarding VAR, VEC, cointegration etc, he gives each student the a particular set of data and posed a few questions, one of them he tells us to find whether or not the 3 series he gave us were cointegrated, for that I did:
Code:
. vecrank Y ER M, lags (3) max ic levela Johansen tests for cointegration Trend: constant Number of obs = 71 Sample: 1998q2 - 2015q4 Lags = 3 ------------------------------------------------------------------------------- maximum trace 5% critical 1% critical rank parms LL eigenvalue statistic value value 0 21 -779.64073 17.8110*1*5 29.68 35.65 1 26 -774.80921 0.12724 8.1479 15.41 20.04 2 29 -770.94587 0.10311 0.4212 3.76 6.65 3 30 -770.73525 0.00592 ------------------------------------------------------------------------------- maximum max 5% critical 1% critical rank parms LL eigenvalue statistic value value 0 21 -779.64073 9.6630 20.97 25.52 1 26 -774.80921 0.12724 7.7267 14.07 18.63 2 29 -770.94587 0.10311 0.4212 3.76 6.65 3 30 -770.73525 0.00592 ------------------------------------------------------------------------------- maximum rank parms LL eigenvalue SBIC HQIC AIC 0 21 -779.64073 23.2225* 22.8194* 22.55326 1 26 -774.80921 0.12724 23.38659 22.88751 22.55801 2 29 -770.94587 0.10311 23.45788 22.90121 22.53369 3 30 -770.73525 0.00592 23.51198 22.93612 22.55592 -------------------------------------------------------------------
Code:
constraint define 1 [_ce1]ER = 1 constraint define 2 [_ce1]M = -1 vec Y ER M, lags(3) bconstraints(1/2) Iteration 1: log likelihood = -775.84756 Iteration 2: log likelihood = -775.77803 Iteration 3: log likelihood = -775.77713 Iteration 4: log likelihood = -775.77711 Iteration 5: log likelihood = -775.77711 Iteration 6: log likelihood = -775.77711 Iteration 7: log likelihood = -775.77711 Iteration 8: log likelihood = -775.77711 Iteration 9: log likelihood = -775.77711 Vector error-correction model Sample: 1998q2 - 2015q4 Number of obs = 71 AIC = 22.5571 Log likelihood = -775.7771 HQIC = 22.87393 Det(Sigma_ml) = 621098.6 SBIC = 23.35382 Equation Parms RMSE R-sq chi2 P>chi2 ---------------------------------------------------------------- D_Y 8 2.6647 0.6010 94.90711 0.0000 D_ER 8 .152769 0.0943 6.558798 0.5849 D_M 8 3434.37 0.3102 28.33345 0.0004 ---------------------------------------------------------------- ------------------------------------------------------------------------------ | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- D_Y | _ce1 | L1. | .0000916 .0000789 1.16 0.246 -.0000632 .0002463 | Y | LD. | -.2792682 .1295411 -2.16 0.031 -.5331641 -.0253723 L2D. | -.7996009 .125757 -6.36 0.000 -1.04608 -.5531217 | ER | LD. | -.1294314 2.231254 -0.06 0.954 -4.50261 4.243747 L2D. | -3.547765 2.274089 -1.56 0.119 -8.004897 .9093669 | M | LD. | .0003968 .0001434 2.77 0.006 .0001159 .0006778 L2D. | .000038 .000131 0.29 0.771 -.0002186 .0002947 | _cons | 1.31649 .3962059 3.32 0.001 .5399403 2.093039 -------------+---------------------------------------------------------------- D_ER | _ce1 | L1. | -.0000102 4.53e-06 -2.26 0.024 -.0000191 -1.37e-06 | Y | LD. | .0075074 .0074267 1.01 0.312 -.0070487 .0220634 L2D. | -.0018011 .0072097 -0.25 0.803 -.0159319 .0123297 | ER | LD. | -.0652166 .1279195 -0.51 0.610 -.3159343 .1855011 L2D. | -.0677055 .1303753 -0.52 0.604 -.3232363 .1878253 | M | LD. | -6.31e-06 8.22e-06 -0.77 0.442 -.0000224 9.80e-06 L2D. | 4.44e-07 7.51e-06 0.06 0.953 -.0000143 .0000152 | _cons | .0259104 .0227148 1.14 0.254 -.0186097 .0704306 -------------+---------------------------------------------------------------- D_M | _ce1 | L1. | .1889534 .1017487 1.86 0.063 -.0104705 .3883772 | Y | LD. | -64.16371 166.9578 -0.38 0.701 -391.3949 263.0675 L2D. | -476.8146 162.0807 -2.94 0.003 -794.4869 -159.1423 | ER | LD. | -3259.871 2875.73 -1.13 0.257 -8896.199 2376.456 L2D. | -1869.447 2930.937 -0.64 0.524 -7613.978 3875.083 | M | LD. | .3444399 .1847622 1.86 0.062 -.0176874 .7065671 L2D. | .0707883 .1687823 0.42 0.675 -.2600189 .4015955 | _cons | -.0006366 510.646 -0.00 1.000 -1000.848 1000.847 ------------------------------------------------------------------------------ Cointegrating equations Equation Parms chi2 P>chi2 ------------------------------------------- _ce1 1 127.8627 0.0000 ------------------------------------------- Identification: beta is overidentified ( 1) [_ce1]ER = 1 ( 2) [_ce1]M = -1 ------------------------------------------------------------------------------ beta | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _ce1 | Y | 695.5911 61.51514 11.31 0.000 575.0236 816.1586 ER | 1 . . . . . M | -1 . . . . . _cons | -62438.07 . . . . . ------------------------------------------------------------------------------ LR test of identifying restrictions: chi2( 1) = 1.936 Prob > chi2 = 0.164
Thank you!
Comment