Hey community!
I hope you are well! I have an inquiry regardind the output from my logit model. What I understand is that my model is correclty classifying the true negatvies in a 99.3% (adoption). On the other hand, the sensitivity correctly clasified 2.73% (non-adoption) and the overall rate of correct classification is estimated to be 72.47%. Despite the great difference between Sensitivity & Specificity, can I conclude from this given outcome or should I do another test / treatment?
Thanks!
Logistic model for x_notill
-------- True --------
Classified | D ~D | Total
-----------+--------------------------+-----------
+ | 3 2 | 5
- | 107 284 | 391
-----------+--------------------------+-----------
Total | 110 286 | 396
Classified + if predicted Pr(D) >= .5
True D defined as x_notill != 0
--------------------------------------------------
Sensitivity Pr( +| D) 2.73%
Specificity Pr( -|~D) 99.30%
Positive predictive value Pr( D| +) 60.00%
Negative predictive value Pr(~D| -) 72.63%
--------------------------------------------------
False + rate for true ~D Pr( +|~D) 0.70%
False - rate for true D Pr( -| D) 97.27%
False + rate for classified + Pr(~D| +) 40.00%
False - rate for classified - Pr( D| -) 27.37%
--------------------------------------------------
Correctly classified 72.47%
I hope you are well! I have an inquiry regardind the output from my logit model. What I understand is that my model is correclty classifying the true negatvies in a 99.3% (adoption). On the other hand, the sensitivity correctly clasified 2.73% (non-adoption) and the overall rate of correct classification is estimated to be 72.47%. Despite the great difference between Sensitivity & Specificity, can I conclude from this given outcome or should I do another test / treatment?
Thanks!
Logistic model for x_notill
-------- True --------
Classified | D ~D | Total
-----------+--------------------------+-----------
+ | 3 2 | 5
- | 107 284 | 391
-----------+--------------------------+-----------
Total | 110 286 | 396
Classified + if predicted Pr(D) >= .5
True D defined as x_notill != 0
--------------------------------------------------
Sensitivity Pr( +| D) 2.73%
Specificity Pr( -|~D) 99.30%
Positive predictive value Pr( D| +) 60.00%
Negative predictive value Pr(~D| -) 72.63%
--------------------------------------------------
False + rate for true ~D Pr( +|~D) 0.70%
False - rate for true D Pr( -| D) 97.27%
False + rate for classified + Pr(~D| +) 40.00%
False - rate for classified - Pr( D| -) 27.37%
--------------------------------------------------
Correctly classified 72.47%
Comment