Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • axmixlogit: get standard deviations of random variable

    I am estimating a -asmixlogit- model in Stata. I want to obtain the standard deviations of the random variables. A normal
    -mixlogit- model returns the standard deviation as default, for example:

    Code:
    Mixed logit model                               Number of obs     =      4,728
                                                    LR chi2(2)        =     346.99
    Log likelihood = -1143.6588                     Prob > chi2       =     0.0000
    
    ------------------------------------------------------------------------------
          choice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    Mean         |
              td |   -.205917    .046748    -4.40   0.000    -.2975415   -.1142926
              at |  -.9214018   .1185973    -7.77   0.000    -1.153848   -.6889554
             fee |  -7.173794   .8711952    -8.23   0.000    -8.881305   -5.466283
    -------------+----------------------------------------------------------------
    SD           |
              at |   1.104228   .1346034     8.20   0.000       .84041    1.368045
             fee |   1.240044   .9083406     1.37   0.172    -.5402709    3.020359
    When I run a -asmixlogit- model, which I need to model my data correctly, the SD is not part of the output. Is there a way to get these?


  • #2
    Hi Joost,

    Stata's asmixlogit reports the scale parameters for coefficients that are specified to be random. In the case of normally distributed random coefficients, these will be the standard deviations:

    Code:
    . asmixlogit choice premium, random(deductible) ///
    >                            case(id) alternatives(insurance)
    
    Fitting fixed parameter model:
    
    Fitting full model:
    
    Iteration 0:   log simulated likelihood = -296.14935  (not concave)
    Iteration 1:   log simulated likelihood = -295.69689  
    Iteration 2:   log simulated likelihood = -295.03152  
    Iteration 3:   log simulated likelihood =   -295.029  
    Iteration 4:   log simulated likelihood =   -295.029  
    
    Alternative-specific mixed logit               Number of obs      =      1,250
    Case variable: id                              Number of cases    =        250
    
    Alternative variable: insurance                Alts per case: min =          5
                                                                  avg =        5.0
                                                                  max =          5
    Integration sequence:      Hammersley
    Integration points:                50             Wald chi2(2)    =      99.66
    Log simulated likelihood =   -295.029             Prob > chi2     =     0.0000
    
    ------------------------------------------------------------------------------
          choice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    insurance    |
         premium |   -2.67349   .2692025    -9.93   0.000    -3.201118   -2.145863
      deductible |   -1.11102   .3376753    -3.29   0.001    -1.772852    -.449189
    -------------+----------------------------------------------------------------
    Normal       |
    sd(deducti~e)|   .8978139   .3605058                      .4086929    1.972312
    -------------+----------------------------------------------------------------
    Health       |
           _cons |   .5203306   .2979809     1.75   0.081    -.0637012    1.104363
    -------------+----------------------------------------------------------------
    HCorp        |  (base alternative)
    -------------+----------------------------------------------------------------
    SickInc      |
           _cons |  -.8428823   .2910199    -2.90   0.004    -1.413271   -.2724937
    -------------+----------------------------------------------------------------
    MGroup       |
           _cons |  -2.108393   .4435735    -4.75   0.000    -2.977781   -1.239005
    -------------+----------------------------------------------------------------
    MoonHealth   |
           _cons |  -3.363821   .6785549    -4.96   0.000    -4.693764   -2.033877
    ------------------------------------------------------------------------------
    LR test vs. fixed parameters: chibar2(01) =     3.02  Prob >= chibar2 = 0.0411
    I hope this helps,

    Joerg

    Comment


    • #3
      Hi Joerg,

      Thank you for your reply and sorry for my late one.
      The problem was that I assumed that the random variables are correlated by means of the Cholesky Matrix.
      When I removes this feat, I get exactly the same output, but with the desired standard deviations, which is exactly what I needed.
      Thank you again!

      Comment

      Working...
      X