Hi,
I'm running a regression with panel data and I want to use several fixed effects; firm specific, country specific, industry specific. Only when I run my model including firm specific fixed effects the r-squared increases sharply but my independent variables remain insignificant. When I include only country and industry specific effects the independent variables become significant but only the r-squared tends to be lower.
Can someone explain to me why the r-squared is high when I use firm specific effect. And would it be logical to only look at my model including country and industry fixed effects?
I'm running a regression with panel data and I want to use several fixed effects; firm specific, country specific, industry specific. Only when I run my model including firm specific fixed effects the r-squared increases sharply but my independent variables remain insignificant. When I include only country and industry specific effects the independent variables become significant but only the r-squared tends to be lower.
Can someone explain to me why the r-squared is high when I use firm specific effect. And would it be logical to only look at my model including country and industry fixed effects?
Code:
reghdfe bda announcement_eligible l_lnassets l_roa, absorb(indus incorp) vce(cluster c) (converged in 9 iterations) HDFE Linear regression Number of obs = 3,944 Absorbing 2 HDFE groups F( 3, 492) = 5.04 Statistics robust to heteroskedasticity Prob > F = 0.0019 R-squared = 0.4422 Adj R-squared = 0.4317 Within R-sq. = 0.2642 Number of clusters (c) = 493 Root MSE = 0.3304 (Std. Err. adjusted for 493 clusters in c) --------------------------------------------------------------------------------------- | Robust bda | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------------+---------------------------------------------------------------- announcement_eligible | .0797131 .0234105 3.41 0.001 .0337163 .12571 l_lnassets | -.0348046 .0159292 -2.18 0.029 -.0661023 -.0035069 l_roa | -3.438988 1.468924 -2.34 0.020 -6.325126 -.5528497 --------------------------------------------------------------------------------------- Absorbed degrees of freedom: ------------------------------------------------------------------------+ Absorbed FE | Num. Coefs. = Categories - Redundant | ----------------------+-------------------------------------------------| indus | 56 56 0 | incorp | 15 16 1 | ------------------------------------------------------------------------+
Code:
reghdfe bda announcement_eligible l_lnassets l_roa, absorb(c indus incorp) vce(cluster c) (converged in 3 iterations) HDFE Linear regression Number of obs = 3,944 Absorbing 3 HDFE groups F( 3, 492) = 0.93 Statistics robust to heteroskedasticity Prob > F = 0.4281 R-squared = 0.8968 Adj R-squared = 0.8796 Within R-sq. = 0.0389 Number of clusters (c) = 493 Root MSE = 0.1521 (Std. Err. adjusted for 493 clusters in c) --------------------------------------------------------------------------------------- | Robust bda | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------------+---------------------------------------------------------------- announcement_eligible | .004275 .0071644 0.60 0.551 -.0098017 .0183516 l_lnassets | -.0143254 .0292794 -0.49 0.625 -.0718535 .0432027 l_roa | -.8736434 .5363002 -1.63 0.104 -1.927365 .1800779 --------------------------------------------------------------------------------------- Absorbed degrees of freedom: ------------------------------------------------------------------------+ Absorbed FE | Num. Coefs. = Categories - Redundant | ----------------------+-------------------------------------------------| c | 0 493 493 * | indus | 55 56 1 | incorp | 15 16 1 | ------------------------------------------------------------------------+ * = fixed effect nested within cluster; treated as redundant for DoF computation .
Comment