I am running a GLM regression model to calculate RR on my medication results (Randomized study, 185 persons in intervention group, 183 persons in the control group; intervention variable is r_treat), PersonWithn_Tricycl3==1 if person gets the tricyclic andtidepressants at 90 day followup, PersonWithn_Tricycl1==1 if person gets the tricyclic andtidepressants at baseline, same for the PPI and all other medications
* Without baseline adjustment
glm PersonWithn_Tricycl3 ib1.r_treat, fam(bin) link(log) nolog
glm, eform
estimates store m1
I need to make an adjustemnt for the baseline medication:
*with PersonWithn_Tricycl1 adjustment
glm PersonWithn_Tricycl3 ib1.r_treat ib2.PersonWithn_Tricycl1, fam(bin) link(log) nolog
glm, eform
estimates store m2
lrtest m1 m2
And I get kikked out of the model:
note: 1.PersonWithn_Tricycl1 omitted because of collinearity
note: 2.PersonWithn_Tricycl1 identifies no observations in the sample
Could anyone helps how to handle this issue? Or should It be a different model I should use to make this ajustment.
Baseline medications does not differ significantly (randomized trial), but outcome medications does-- But I have to justify that this is the Intervention effect, but not the fact of the baseline medication.
Dataset example:
All the advices are highly appreciated. Kindly, Natallia
* Without baseline adjustment
glm PersonWithn_Tricycl3 ib1.r_treat, fam(bin) link(log) nolog
glm, eform
estimates store m1
I need to make an adjustemnt for the baseline medication:
*with PersonWithn_Tricycl1 adjustment
glm PersonWithn_Tricycl3 ib1.r_treat ib2.PersonWithn_Tricycl1, fam(bin) link(log) nolog
glm, eform
estimates store m2
lrtest m1 m2
And I get kikked out of the model:
note: 1.PersonWithn_Tricycl1 omitted because of collinearity
note: 2.PersonWithn_Tricycl1 identifies no observations in the sample
Number of persons receiving | Baseline Intervention | Outcome intervention | Baseline Control | Outcome Control |
Tricyclic antidepressants | 7 | 11 | 4 | 2 |
PPI | 86 | 64 | 80 | 73 |
Baseline medications does not differ significantly (randomized trial), but outcome medications does-- But I have to justify that this is the Intervention effect, but not the fact of the baseline medication.
Dataset example:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input int id byte r_treat float(PersonWithn_PPI1 PersonWithn_Tricycl1 PersonWithn_PPI3 PersonWithn_Tricycl3) 9 1 1 0 1 0 11 2 1 0 1 0 12 1 1 0 1 0 17 1 0 0 0 0 20 2 1 0 1 0 39 2 0 0 0 0 53 2 0 0 0 0 54 2 0 0 0 0 55 1 0 0 0 0 56 2 0 0 0 0 57 1 0 0 0 0 59 1 0 0 0 0 65 2 1 0 1 0 68 2 1 0 1 0 69 2 1 0 0 0 74 1 0 0 0 0 79 1 1 0 0 0 82 1 0 0 0 0 93 2 0 0 0 0 97 1 0 0 0 0 101 1 1 0 1 0 104 2 0 0 0 0 105 2 0 0 0 0 117 2 0 0 0 0 121 2 1 0 1 0 122 1 0 0 0 0 136 1 0 0 0 0 146 1 0 0 0 0 147 2 0 0 0 0 153 1 0 0 0 0 154 2 0 0 0 0 165 1 0 0 0 0 166 1 0 0 0 0 167 1 1 0 1 0 170 1 0 0 0 0 172 1 0 0 0 0 173 1 0 0 0 0 177 2 0 0 1 0 178 2 1 0 0 1 192 2 1 0 1 0 193 2 0 0 1 0 197 1 0 0 0 0 199 1 0 0 0 0 203 2 0 0 0 0 209 2 1 0 1 0 213 1 1 0 1 0 221 2 1 0 1 1 224 1 0 0 0 0 229 2 0 0 0 0 231 1 0 0 0 0 233 1 1 0 1 0 234 1 0 1 1 1 239 1 0 0 1 0 243 1 1 0 1 0 245 2 1 0 1 0 247 1 1 0 1 0 249 2 0 0 0 0 270 2 0 0 0 0 282 1 0 0 0 0 287 1 0 0 0 0 288 2 1 0 1 0 293 1 0 0 0 0 306 2 1 0 0 0 310 2 0 1 0 1 317 1 1 0 1 0 332 2 0 0 0 0 335 1 1 0 1 0 340 2 0 0 0 0 341 2 1 0 0 0 352 2 0 0 0 0 353 1 1 0 1 0 354 1 1 0 1 0 358 2 0 0 0 0 364 2 1 0 0 0 366 2 0 0 0 0 367 2 0 0 0 0 373 1 0 0 0 0 375 1 1 0 1 0 377 1 0 0 0 0 380 2 0 1 0 1 381 2 0 0 1 0 390 1 1 0 1 0 397 2 0 0 0 0 400 2 1 0 1 0 401 1 1 0 1 0 402 2 1 1 0 1 408 2 0 0 0 0 411 1 1 0 1 0 412 1 0 0 0 0 416 2 1 0 1 0 418 2 1 0 1 0 421 1 1 0 0 0 428 2 1 0 1 0 429 1 0 0 0 0 433 2 0 0 0 0 435 1 1 0 1 0 440 1 0 0 0 0 442 2 1 0 1 0 446 1 0 0 0 0 449 1 0 0 0 0 end
Comment