I am doing an event study, where I measure the CARs of 78 firms over the index.
I measure whether the CARs are different for firms that are politically connected (therefore in the regression I add a connecteddummy)
I used the following codes:
use "file with returns of firms"
sort _j date
by _j: gen datenum=_n
format %td date
by _j: gen target=datenum if date==td(09nov2007)
sort date
egen td=min(target), by(_j)
drop target
gen dif=datenum-td
sort _j
by _j: gen event_window=1 if dif>=-10 & dif<=60
by _j: gen estimation_window=1 if dif<-50
replace event_window=0 if event_window==.
replace estimation_window=0 if estimation_window==.
merge m:1 date using "file with the indexreturns"
set more off
gen predicted_return=.
forvalues i=1/78{
l _j if _j==`i' & dif==0
reg returns returnindex if _j==`i' & estimation_window==1
predict p if _j==`i'
replace predicted_return = p if _j==`i' & event_window==1
drop p
}
sort _j date
gen abnormal_return=returns-predicted_return if event_window==1
by _j: egen cumulative_abnormal_return = sum(abnormal_return)
drop _merge
merge m:m mnem using "file with descriptives of the firms"
sort conn
by conn: reg cumulative_abnormal_return if dif==0, robust
reg cumulative_abnormal_return if dif==0, robust
regress cumulative_abnormal_return connecteddummy size leverage i.sic2
But now, all my variables are significant with p-values of 0.000, different t-values though.
This seems to good to be true... Is there any mistake I made in the codes?
I am doubting the most about the part I made bold, since I do not follow the princeton guidelines there exactly (https://dss.princeton.edu/online_hel...ventstudy.html)
Thank you!!!!
I measure whether the CARs are different for firms that are politically connected (therefore in the regression I add a connecteddummy)
I used the following codes:
use "file with returns of firms"
sort _j date
by _j: gen datenum=_n
format %td date
by _j: gen target=datenum if date==td(09nov2007)
sort date
egen td=min(target), by(_j)
drop target
gen dif=datenum-td
sort _j
by _j: gen event_window=1 if dif>=-10 & dif<=60
by _j: gen estimation_window=1 if dif<-50
replace event_window=0 if event_window==.
replace estimation_window=0 if estimation_window==.
merge m:1 date using "file with the indexreturns"
set more off
gen predicted_return=.
forvalues i=1/78{
l _j if _j==`i' & dif==0
reg returns returnindex if _j==`i' & estimation_window==1
predict p if _j==`i'
replace predicted_return = p if _j==`i' & event_window==1
drop p
}
sort _j date
gen abnormal_return=returns-predicted_return if event_window==1
by _j: egen cumulative_abnormal_return = sum(abnormal_return)
drop _merge
merge m:m mnem using "file with descriptives of the firms"
sort conn
by conn: reg cumulative_abnormal_return if dif==0, robust
reg cumulative_abnormal_return if dif==0, robust
regress cumulative_abnormal_return connecteddummy size leverage i.sic2
But now, all my variables are significant with p-values of 0.000, different t-values though.
This seems to good to be true... Is there any mistake I made in the codes?
I am doubting the most about the part I made bold, since I do not follow the princeton guidelines there exactly (https://dss.princeton.edu/online_hel...ventstudy.html)
Thank you!!!!
Comment