Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Mixed post-estimation: Drawing predictions and interpreting them

    Dear statalist,

    I am having difficulties to interpret the graph of predictions from a multilevel model and hope someone can help me clarify if I graphed what I want to graph and if so, how to interpret the output.
    First my data:
    Code:
    input int GKZ float invtot double(Haushaltseinkommen Bruttoverdienst Arbeitslosenquote Beschäftigtenquote Durchschnittsalter BIPproEW Steuereinnahmen) int Einwohnerdichte float syear long bula float ost
    1001  3234.374 1197.5 1971.4 11.8 46.1   41  31.1  511.6 1485 2000 1 0
    1001 1259.7567 1551.5 2234.6 11.1 47.9 42.6  39.3  643.3 1480 2013 1 0
    1001  998.1883 1395.9 2082.7 11.5   41 41.3  36.6    572 1564 2008 1 0
    1002  2977.828 1200.2   2127 11.3 46.1   41  33.7  526.5 1961 2000 1 0
    1002 1542.9478 1502.5 2472.9 10.2 47.5 41.4  41.8  664.4 2036 2013 1 0
    1002  1277.388 1394.7 2253.5 11.4   44 41.4  38.1  661.6 2002 2008 1 0
    1003  1353.792 1544.8 2311.2 10.4 50.6 44.5  34.7  594.3  994 2013 1 0
    1003  2839.329 1221.2 1951.5 12.6 46.4 42.6  26.5  436.6  996 2000 1 0
    1003 1270.9838 1465.9 2077.4 12.2 45.8 43.7  30.2  546.6  985 2008 1 0
    1004   1367.63 1389.2 2074.4   11 48.3 42.7  31.8  555.6 1076 2008 1 0
    1004   1430.57 1481.3 2321.9 11.1 51.9 44.1  35.8  611.2 1076 2013 1 0
    1004  2686.803 1260.2 2033.7 12.2 49.5 41.1  27.5  481.3 1115 2000 1 0
    1051  896.8656 1673.5 2149.8  7.6   51   45  27.1  585.3   93 2013 1 0
    1051  825.4948 1482.6 1993.9  9.7 45.8 43.5    25  527.3   95 2008 1 0
    1051 1477.6533 1180.5 1948.5    9 45.9   41  22.4  418.9   96 2000 1 0
    1053  884.5883 1665.9 1982.4  6.5 51.7 42.8  18.8  566.7  148 2008 1 0
    1053  998.2321 1860.1 2209.5  6.2 55.6 44.3    21  650.8  150 2013 1 0
    1053 1475.1763 1416.3   1831  7.5 49.5 40.7    18  464.1  142 2000 1 0
    1054  1842.165 1233.3 1789.7  7.4 46.4 40.5  23.4  428.2   79 2000 1 0
    1054 1226.3568 1623.4 1916.8  7.9 47.1 42.9  28.1  753.8   80 2008 1 0
    1054 1201.9829   1864 2228.9  6.6 53.5 44.8  30.7  702.8   78 2013 1 0
    1055  777.8737 1531.1 1825.9    8 47.3 45.4  19.2  504.8  147 2008 1 0
    1055 1455.7244 1279.5 1664.4    9 45.9 42.7  18.4  426.9  145 2000 1 0
    1055  913.3501 1767.2 2021.5  6.5 54.3 46.9  22.2  592.5  142 2013 1 0
    1056  994.0176 1945.9 2450.6  5.4 58.8 44.1  26.3    810  454 2013 1 0
    1056  762.2642   1720 2224.5    6 53.2   43  24.8  721.2  454 2008 1 0
    1056 1487.2058 1512.7 1940.2  7.7   51 41.1  21.4  579.9  439 2000 1 0
    1057  645.7213 1473.3 1772.2    7 45.2 43.9    16  532.8  125 2008 1 0
    1057  805.1359 1758.3 1978.3  5.6 53.4   46  19.1  583.5  117 2013 1 0
    1057 1369.3368 1252.7 1556.8  7.3 43.9   41  13.7  379.6  123 2000 1 0
    1058  904.8422 1803.5 2184.8  5.7 52.7 44.5  26.5  610.8  123 2013 1 0
    1058 1572.6926 1309.5 1793.4  7.7 46.3 40.3  21.7  459.3  123 2000 1 0
    1058  758.3409 1581.9 1902.2  5.6 48.3 42.7  24.6  553.1  124 2008 1 0
    1059  673.3964   1521 1815.6  8.5 45.1 42.7  20.5  469.6   96 2008 1 0
    1059  830.4106 1700.7 2026.7  7.7 49.9 44.5    23  550.3   94 2013 1 0
    1059  1576.084 1213.8 1810.3  7.3 44.8   40  18.6  378.3   96 2000 1 0
    1060  995.2684 1802.1 2364.9  5.1 58.3 43.9  27.8    754  196 2013 1 0
    1060  832.6856 1633.6 2198.3  5.1 55.2 42.2  26.7  695.1  192 2008 1 0
    1060 1703.5753 1427.2 1981.2  6.7 53.8 39.9  23.7  573.3  186 2000 1 0
    1061  745.6447 1497.7   2014  5.8 49.3 42.7  29.2  624.4  127 2008 1 0
    1061  830.7108 1699.2 2236.8  6.1 54.3 44.5  30.5  694.9  123 2013 1 0
    1061  1411.294 1237.5 1881.3  8.5 48.4 40.4  23.5  589.2  129 2000 1 0
    1062  2163.621 1614.3 2247.8  5.8 51.5 41.4    24  716.7  284 2000 1 0
    1062  831.7444 1858.5 2269.8  4.1   54 43.4  28.8  868.1  297 2008 1 0
    1062  954.9894 2017.5 2456.4  4.2 57.8 44.5  29.2  898.2  306 2013 1 0
    2000         . 1488.9 2503.5  8.9 47.5 41.3  45.5  890.2 2271 2000 . .
    2000         . 1934.2 3106.6  7.4   55   42  58.6 1190.2 2312 2013 . .
    2000         . 1757.4   2808  8.1 48.2 41.8  53.7 1135.2 2346 2008 . .
    3101 1246.5654 1513.8   2363  9.2 48.6 43.1    37  736.5 1280 2008 3 0
    3101 1246.5654 1625.4 2658.4  7.1 55.5 43.2  41.6  815.8 1287 2013 3 0
    3101 2722.0654 1330.3 2166.4 11.2 48.8 42.4    32  599.3 1279 2000 3 0
    3102 1426.0334 1385.6 2556.2  9.6 49.8   44    40  982.5  466 2008 3 0
    3102 1426.0334 1581.8 3050.9  9.3 56.3 45.1  46.9  668.2  439 2013 3 0
    3102 2611.9346   1229 2329.8   13 50.1 41.7  32.4  494.3  502 2000 3 0
    3103  1795.996 1570.9   3272    7 56.4 44.1  92.2 1026.9  591 2008 3 0
    3103   3074.45 1367.4 3071.2 10.3 52.2 42.4  80.6  978.3  597 2000 3 0
    3103  1795.996 1731.4 4052.7  4.9 61.2 44.1 129.7 1532.8  600 2013 3 0
    3151  546.4481 1479.3 1857.9  6.7 53.3 41.1  15.6  490.2  111 2008 3 0
    3151 1273.2922 1260.8 1783.7  9.9 51.2 38.4  13.7  383.6  110 2000 3 0
    3151  546.4481 1691.3 2064.9  5.2 58.3 42.8  17.6  613.7  110 2013 3 0
    3153  821.5713 1441.4 2018.8  9.7   47   46  22.6  500.9  151 2008 3 0
    3153  821.5713 1614.5 2232.3  8.8 51.4 47.2  25.1  549.6  143 2013 3 0
    3153 1849.3165 1249.8 1831.5 12.1   47 43.8  19.3  410.5  162 2000 3 0
    3154  650.0555 1722.4 2122.2  7.5 57.3 45.7  19.6    497  134 2013 3 0
    3154  650.0555 1500.1 1857.9  9.1 50.7 44.2  17.5  558.6  141 2008 3 0
    3154  1788.833   1313 1834.9 11.9 49.5 41.8  15.3  365.4  148 2000 3 0
    3155   1825.09 1250.2 1809.6 10.6 49.8 42.1  18.6  411.8  119 2000 3 0
    3155  697.0458   1463 2011.6  8.2 50.8 44.5  21.8  511.9  112 2008 3 0
    3155  697.0458 1662.6 2235.4  7.3   56 46.1  25.1  600.2  106 2013 3 0
    3157  688.3698 1457.4 1976.7    8 52.6 42.6  20.9  539.5  248 2008 3 0
    3157 1138.0107 1277.5 1866.6  9.2 51.2 40.5  15.9  419.3  247 2000 3 0
    3157  688.3698 1632.3 2152.1    6   57   44  20.2  596.6  243 2013 3 0
    3158  749.7506 1653.8 2094.8  6.2 54.6 45.2  18.2  625.4  166 2013 3 0
    3158  749.7506 1459.8 1816.9  6.8 50.1 43.7  16.2  544.4  171 2008 3 0
    3158  1511.368 1267.5 1725.6 10.1 48.3 41.1  12.5  417.7  175 2000 3 0
    3241  1042.238 1653.3 2684.1  8.2 54.6 43.5  39.8  842.1  489 2013 3 0
    3241 2430.6614 1332.3 2230.1  9.7 50.2 41.5  30.4  588.8  488 2000 3 0
    3241  1042.238 1509.2 2400.7  9.1 49.7 42.9  36.9  747.5  493 2008 3 0
    3251  716.5629 1552.7 1867.9  5.3 52.4 42.8  24.2  668.1  108 2008 3 0
    3251 1544.6233 1323.4 1777.7  6.3 49.8 40.5  20.2  487.2  106 2000 3 0
    3251  716.5629 1757.4 2083.1  4.6   58 44.3  26.4  763.8  106 2013 3 0
    3252 1769.7384 1289.2   2024 11.3 50.3 42.7  23.5  575.1  204 2000 3 0
    3252   797.049 1472.6 2179.5  9.4 50.3 44.6  28.2  605.6  196 2008 3 0
    3252   797.049 1680.4 2372.7  8.2 55.5 46.1  31.2  631.1  186 2013 3 0
    3254 2009.4618 1277.2 1959.3  8.8 49.9 41.5  19.2  445.9  243 2000 3 0
    3254  832.4831 1445.7 2106.8  8.1 49.9 43.5  22.3  542.1  238 2008 3 0
    3254  832.4831   1628 2270.6  7.6 54.2 44.8  24.5  617.3  228 2013 3 0
    3255   1448.76 1277.1 2038.7  9.7 49.6 42.4  20.1  453.3  118 2000 3 0
    3255  600.8178 1465.7 2081.5  8.9 49.7 44.9  23.1  563.6  108 2008 3 0
    3255  600.8178 1647.9 2363.8  8.3 52.7 46.2  27.6  591.8  104 2013 3 0
    3256  665.7817 1414.8 1919.8  7.3 50.4 42.5  22.5    555   89 2008 3 0
    3256 1429.0028 1219.8 1809.4  7.3 49.9 40.3  21.1  445.5   90 2000 3 0
    3256  665.7817 1621.3 2171.8  6.2 56.1 44.3  26.9  615.1   86 2013 3 0
    3257  670.6334 1680.4 2131.5  6.9   54 45.7  21.8  571.4  230 2013 3 0
    3257 1458.3638 1303.5 1724.6  8.4   49 41.6  17.6  397.4  246 2000 3 0
    3257  670.6334 1468.7 1870.3  8.5 48.9 43.9  18.8  510.8  241 2008 3 0
    3351  789.2302 1415.8 2065.2  8.4 47.9 42.9  23.2  585.2  117 2008 3 0
    3351 1894.2137 1221.4 1904.9 10.3 47.4 40.7  22.2  424.4  118 2000 3 0
    3351  789.2302   1589 2343.5  7.5 53.6 44.4  26.4    631  114 2013 3 0
    3352 2026.8308 1211.9 1675.7  8.9 46.1 41.5  14.5  362.1  100 2000 3 0
    end
    label values bula bula
    label def bula 1 "Schleswig-Holstein", modify
    label def bula 3 "Niedersachsen", modify
    label values ost ostdummy
    label def ostdummy 0 "West", modify
    My model looks like this:
    Code:
     mixed invtot c.Haushaltseinkommen##c.Bruttoverdienst Arbeitslosenquote Beschäftigtenquote Durchschnittsalter BIPproEW Steuereinnahmen Einwohnerdichte i.syear i.bula i.ost || bula: || GKZ: , vce(robust)
    The estimation results:
    Code:
    mixed invtot c.Haushaltseinkommen##c.Bruttoverdienst Arbeitslosenquote Beschäftigtenquote Durchschnittsalter BIPproEW Steuereinnahmen E
    > inwohnerdichte i.syear i.bula i.ost || bula: || GKZ: ,vce(robust)
    note: 1.ost omitted because of collinearity
    
    Performing EM optimization: 
    
    Performing gradient-based optimization: 
    
    Iteration 0:   log pseudolikelihood = -8294.5195  
    Iteration 1:   log pseudolikelihood = -8293.8168  
    Iteration 2:   log pseudolikelihood = -8293.7575  
    Iteration 3:   log pseudolikelihood = -8293.7575  
    
    Computing standard errors:
    
    Mixed-effects regression                        Number of obs     =      1,188
    
    -------------------------------------------------------------
                    |     No. of       Observations per Group
     Group Variable |     Groups    Minimum    Average    Maximum
    ----------------+--------------------------------------------
               bula |         13         18       91.4        288
                GKZ |        396          3        3.0          3
    -------------------------------------------------------------
    
                                                    Wald chi2(11)     =          .
    Log pseudolikelihood = -8293.7575               Prob > chi2       =          .
    
                                                                (Std. Err. adjusted for 13 clusters in bula)
    --------------------------------------------------------------------------------------------------------
                                           |               Robust
                                    invtot |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    ---------------------------------------+----------------------------------------------------------------
                        Haushaltseinkommen |   1.123442   .2449337     4.59   0.000     .6433811    1.603504
                           Bruttoverdienst |   .5623255   .2127294     2.64   0.008     .1453835    .9792674
                                           |
    c.Haushaltseinkommen#c.Bruttoverdienst |  -.0004859   .0001257    -3.87   0.000    -.0007323   -.0002396
                                           |
                         Arbeitslosenquote |   12.84657   11.43487     1.12   0.261    -9.565359    35.25849
                        Beschäftigtenquote |   4.100383    3.89359     1.05   0.292    -3.530914    11.73168
                        Durchschnittsalter |   62.98251   14.93219     4.22   0.000     33.71595    92.24907
                                  BIPproEW |   13.77028    2.09845     6.56   0.000     9.657398    17.88317
                           Steuereinnahmen |   .2288332   .1309357     1.75   0.081    -.0277961    .4854625
                           Einwohnerdichte |   .2944202   .0376504     7.82   0.000     .2206267    .3682137
                                           |
                                     syear |
                                     2008  |  -1164.044   60.78472   -19.15   0.000     -1283.18   -1044.908
                                     2013  |  -1145.501   81.01611   -14.14   0.000     -1304.29   -986.7127
                                           |
                                      bula |
                            Niedersachsen  |  -79.03328   8.786698    -8.99   0.000    -96.25489   -61.81167
                      Nordrhein-Westfalen  |   43.46324   24.49071     1.77   0.076    -4.537661    91.46414
                                   Hessen  |   22.54467   21.78153     1.04   0.301    -20.14636    65.23569
                          Rheinland-Pfalz  |   101.1575    13.3085     7.60   0.000     75.07331    127.2417
                        Baden-Württemberg  |   284.6323   27.51888    10.34   0.000     230.6963    338.5683
                                   Bayern  |   126.8192   27.82473     4.56   0.000     72.28378    181.3547
                                 Saarland  |  -143.5269   23.06242    -6.22   0.000    -188.7284   -98.32534
                              Brandenburg  |   176.8709   57.73812     3.06   0.002     63.70623    290.0355
                   Mecklenburg-Vorpommern  |  -185.2627     68.896    -2.69   0.007    -320.2963   -50.22899
                                  Sachsen  |  -174.6944   56.32618    -3.10   0.002    -285.0917   -64.29712
                           Sachsen-Anhalt  |  -270.9581   68.83433    -3.94   0.000    -405.8709   -136.0453
                                Thüringen  |  -132.6153   50.96755    -2.60   0.009    -232.5099   -32.72078
                                           |
                                       ost |
                                      Ost  |          0  (omitted)
                                     _cons |  -2892.482   531.5937    -5.44   0.000    -3934.387   -1850.578
    --------------------------------------------------------------------------------------------------------
    
    ------------------------------------------------------------------------------
                                 |               Robust           
      Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
    -----------------------------+------------------------------------------------
    bula: Identity               |
                      var(_cons) |   2.73e-09          .             .           .
    -----------------------------+------------------------------------------------
    GKZ: Identity                |
                      var(_cons) |   12596.52   6887.585      4313.465    36785.33
    -----------------------------+------------------------------------------------
                   var(Residual) |   57285.62   10154.66      40472.35    81083.56
    ------------------------------------------------------------------------------
    After the estimation, I want to graph the predictions for "Haushaltseinkommen" (net income) for my county variable (GKZ) in order to see how their total investments (invtot) are estimated to develop with rising "Haushaltseinkommen" (household income), sorted by the countries (bula) in which the counties are nested. I write:

    Code:
    predict invtotfit, fitted
    sort GKZ Haushaltseinkommen
    twoway (line invtotfit Haushaltseinkommen, connect(ascending) lwidth(vthin) by(bula)), xlabel(,labsize(small) format(%9.0f)) ylabel(,labsize(small)) xtitle("Haushaltseinkommen") ytitle("Empirical Bayes Regressionsgeraden")
    The following graph is being drawn:

    Click image for larger version

Name:	invtot_hhinc_bula.jpg
Views:	1
Size:	432.4 KB
ID:	1444143


    Even though its a bit chaotic due to the relatively big number of counties (GKZ), I think it gets clear that most counties have sinking total investments when net incomes (Haushaltseinkommen) rise, until a certain tipping point after which total investments rise again. (the "typical" regression line looks like a reflected nike-swoosh i guess) What's strange to me is the difference between this interpretation and how I would interpret the positive coefficient of "Haushaltseinkommen", which estimates a positive correlation and therefore I would expect total investments to rise when net income (Haushaltseinkommen) does. (Even though the interaction variable with gross income ("Bruttoeinkommen") is negative, its coefficient is so close to zero, it cannot make up for the positive coefficient of Haushaltseinkommen, right?)

    Any hints of whether my graph is being drawn right and about my conclusion would be highly appreciated, especially regarding the positive coefficient of net income (Haushaltseinkommen) in the estimation results and the seemingly negative relationship between rising net income (Haushaltseinkommen) and total investments in the graph.

    Thanks a lot!
Working...
X