Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Using time dependent interaction term in cox regression

    Hello,

    I'm running a cox regression with an interaction term and faced an issue.

    I ran a cox regression using "stcox" and examined for any time varying covariates using "estat phtest, detail" and selected those variables required and added them into the "tvc()" option.
    However, the issue I have is that my interaction effect term goes against the ph assumption.
    I was unable to find any other solution to this so added the interaction term into the "tvc()" option along with the other independent variables.

    My questions are,
    1. is it correct to add the interaction term into the "tvc()" option?
    2. once included how can I interpret the output?

    I have listed the codes and the process I followed below. Kindly let me know if I've made any mistakes in posting on the board as I'm relatively new here.
    Thanks.

    Below are my codes:

    Step 1. I first ran the cox regression
    Code:
    stcox i.gender age_cr i.marr_n i.edu edu_pa i.form_pa i.income_gr_r i.comtype_n i.job_cat i.size2 i.size3 i.region wage_gr worktime i.source i.source#i.income_gr_r if form==1, nolog nohr vce(cluster sampid)
    My interaction term here is:
    Code:
    i.source#i.income_gr_r
    Step 2. Then I examined for time varying covariates
    Code:
    estat phtest, detail
    The result for the ph test for my interaction term was:
    Code:
      Test of proportional-hazards assumption
    
          Time:  Time
          ----------------------------------------------------------------
                      |       rho            chi2       df       Prob>chi2
          ------------+---------------------------------------------------
          0b.source#~r|            .            .        1             .
          0b.source#~r|            .            .        1             .
          0b.source#~r|            .            .        1             .
          1o.source#~r|            .            .        1             .
          1.source#2~r|     -0.01688         0.57        1         0.4499
          1.source#3~r|     -0.06321         9.07        1         0.0026
    Step 3. I used the "tvc()" option to adjust for the time varying covariates
    Code:
    stcox i.gender age_cr i.marr_n i.edu edu_pa i.form_pa i.income_gr_r i.comtype_n i.job_cat i.size2 i.size3 i.region wage_gr worktime i.source i.source#i.income_gr_r if form==1, nolog nohr vce(cluster sampid) tvc(i.gender age_cr i.marr_n edu_pa i.job_cat wage_gr i.source#i.income_gr_r)
    Result
    Code:
     failure _d:  change == 1
       analysis time _t:  stop_g
      exit on or before:  time .
                     id:  sampid
    
    
    Cox regression -- Breslow method for ties
    
    No. of subjects      =        3,491             Number of obs    =       4,368
    No. of failures      =        1,929
    Time at risk         =       154216
                                                    Wald chi2(46)    =     1340.14
    Log pseudolikelihood =   -12878.848             Prob > chi2      =      0.0000
    
                                       (Std. Err. adjusted for 3,491 clusters in sampid)
    ------------------------------------------------------------------------------------
                       |               Robust
                    _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------------+----------------------------------------------------------------
    main               |
              2.gender |  -.4431066   .0949016    -4.67   0.000    -.6291103   -.2571029
                age_cr |  -.0313461   .0164819    -1.90   0.057      -.06365    .0009578
              1.marr_n |  -1.010725   .1327421    -7.61   0.000    -1.270894   -.7505549
                       |
                   edu |
                    2  |   .0264575   .0684341     0.39   0.699    -.1076708    .1605858
                    3  |   .1271726   .0725084     1.75   0.079    -.0149413    .2692865
                       |
                edu_pa |   -.006407   .0147114    -0.44   0.663    -.0352409    .0224269
             1.form_pa |   .0209957    .047208     0.44   0.657    -.0715303    .1135217
                       |
           income_gr_r |
                    2  |   .2850941   .1108405     2.57   0.010     .0678507    .5023376
                    3  |   .1893827   .1479515     1.28   0.201    -.1005968    .4793623
                       |
           1.comtype_n |   .5158948   .0961778     5.36   0.000     .3273898    .7043998
                       |
               job_cat |
                    1  |  -.0275108   .1266858    -0.22   0.828    -.2758105    .2207888
                    2  |  -.3652914   .1282001    -2.85   0.004     -.616559   -.1140239
                    3  |  -.1030574   .1343132    -0.77   0.443    -.3663064    .1601916
                    4  |   .0538833   .1721741     0.31   0.754    -.2835718    .3913383
                    5  |   .0940228   .1502597     0.63   0.531    -.2004808    .3885265
                    6  |  -.4941672   .1567611    -3.15   0.002    -.8014133    -.186921
                    7  |  -.0415263   .6525417    -0.06   0.949    -1.320485    1.237432
                    8  |  -.4924015   .1495981    -3.29   0.001    -.7856083   -.1991946
                    9  |   .1907758   1.500997     0.13   0.899    -2.751124    3.132676
                       |
               1.size2 |    .018672   .0594922     0.31   0.754    -.0979307    .1352746
               1.size3 |   .0297716   .0610715     0.49   0.626    -.0899263    .1494695
              1.region |   .0353711   .0495305     0.71   0.475     -.061707    .1324492
               wage_gr |  -1.044532   .0630823   -16.56   0.000    -1.168171   -.9208935
              worktime |   .0226867     .00322     7.05   0.000     .0163757    .0289977
              1.source |   .2084912   .1313705     1.59   0.113    -.0489903    .4659726
                       |
    source#income_gr_r |
                  1 2  |  -.1215072   .1673016    -0.73   0.468    -.4494124    .2063979
                  1 3  |   .2565586   .2646868     0.97   0.332    -.2622179    .7753351
    -------------------+----------------------------------------------------------------
    tvc                |
              2.gender |   .0030807   .0014135     2.18   0.029     .0003103     .005851
                age_cr |   .0006733   .0002153     3.13   0.002     .0002513    .0010954
              1.marr_n |   .0043274   .0015735     2.75   0.006     .0012434    .0074114
                edu_pa |   .0004625   .0002071     2.23   0.026     .0000565    .0008685
                       |
               job_cat |
                    1  |   .0031691   .0019483     1.63   0.104    -.0006496    .0069877
                    2  |   .0054766   .0018022     3.04   0.002     .0019444    .0090088
                    3  |    .004783   .0019121     2.50   0.012     .0010353    .0085307
                    4  |   .0030819   .0028713     1.07   0.283    -.0025456    .0087095
                    5  |   .0027282   .0023817     1.15   0.252    -.0019398    .0073963
                    6  |   .0045121   .0020554     2.20   0.028     .0004837    .0085406
                    7  |  -.0041726    .009211    -0.45   0.651    -.0222258    .0138807
                    8  |    .003698   .0021001     1.76   0.078    -.0004181    .0078141
                    9  |   .0329873   .0271745     1.21   0.225    -.0202738    .0862483
                       |
               wage_gr |   .0034141   .0008392     4.07   0.000     .0017693    .0050589
                       |
    source#income_gr_r |
                  0 2  |  -.0028383   .0015357    -1.85   0.065    -.0058482    .0001715
                  0 3  |   .0028599   .0021451     1.33   0.182    -.0013444    .0070642
                  1 1  |  -.0008861   .0017877    -0.50   0.620    -.0043898    .0026177
                  1 2  |  -.0045665   .0017349    -2.63   0.008    -.0079669   -.0011661
                  1 3  |   -.010152   .0038855    -2.61   0.009    -.0177674   -.0025366
    ------------------------------------------------------------------------------------
    Note: Variables in tvc equation interacted with _t.
Working...
X