Hello, Folks,
I have posted here before regarding this subject. To recap, I am using the National Health Interview Survey (NHIS) to fit an SEM model. I restricted my analysis to a sub-population (called afim1, with about 1700 unweighted cases - see data extract below). Results from my analysis continually state that a lot of strata (over 200) were "omitted because they contain no subpopulation members". I used svydes if afim1==1 to check the extent of singleton units in the data, and part of the results are posted below:
I realize that there are a number of PSU's with few observations (the ones with 1*). I know others have suggested a number of options including modifying the svy singleunit option, but none of this have worked. I need to focus my analysis on this subpopulation, hence I thinking of a way to combine some of the singleton strata with adjoining ones? I've produced an extract of the dataset with relevant variables - strata, psu etc below. So my question is wow wii I got about doing this merging adjoining single psu with others?
Sorry for the long post - thanks - cY
scratch of the dataset:
I have posted here before regarding this subject. To recap, I am using the National Health Interview Survey (NHIS) to fit an SEM model. I restricted my analysis to a sub-population (called afim1, with about 1700 unweighted cases - see data extract below). Results from my analysis continually state that a lot of strata (over 200) were "omitted because they contain no subpopulation members". I used svydes if afim1==1 to check the extent of singleton units in the data, and part of the results are posted below:
Code:
Survey: Describing stage 1 sampling units pweight: sampwt1 VCE: linearized Single unit: scaled Strata 1: strata SU 1: psu FPC 1: <zero> #Obs per Unit ---------------------------- Stratum #Units #Obs min mean max -------- -------- -------- -------- -------- -------- 5002 1* 1 1 1.0 1 5007 1* 5 5 5.0 5 5008 2 3 1 1.5 2 5009 1* 2 2 2.0 2 5011 2 8 4 4.0 4 5012 2 5 1 2.5 4 5013 2 9 1 4.5 8 5014 1* 1 1 1.0 1 5016 1* 1 1 1.0 1 5017 1* 1 1 1.0 1 5020 2 5 1 2.5 4 5021 2 2 1 1.0 1 5022 2 4 2 2.0 2 5024 2 3 1 1.5 2 5027 2 24 7 12.0 17 5028 1* 1 1 1.0 1 5030 1* 1 1 1.0 1 5031 2 2 1 1.0 1 5033 1* 1 1 1.0 1 5034 1* 3 3 3.0 3 6261 1* 1 1 1.0 1 6262 1* 2 2 2.0 2 6264 2 15 5 7.5 10 6265 2 12 4 6.0 8 6266 2 2 1 1.0 1 6267 1* 2 2 2.0 2 6268 1* 1 1 1.0 1 6271 1* 6 6 6.0 6 6272 2 11 4 5.5 7 6273 1* 1 1 1.0 1 6274 1* 1 1 1.0 1 6275 1* 3 3 3.0 3 6276 2 4 1 2.0 3 6278 2 3 1 1.5 2 6279 1* 2 2 2.0 2 6281 1* 2 2 2.0 2 6283 1* 2 2 2.0 2 6284 1* 1 1 1.0 1 6285 1* 2 2 2.0 2 6286 1* 1 1 1.0 1 6287 1* 1 1 1.0 1 6289 1* 2 2 2.0 2 6290 1* 1 1 1.0 1 6292 1* 1 1 1.0 1 6293 1* 1 1 1.0 1 -------- -------- -------- -------- -------- -------- 441 644 1,720 1 2.7 25 312,967 = #Obs with missing values in the -------- survey characteristics 314,687
I realize that there are a number of PSU's with few observations (the ones with 1*). I know others have suggested a number of options including modifying the svy singleunit option, but none of this have worked. I need to focus my analysis on this subpopulation, hence I thinking of a way to combine some of the singleton strata with adjoining ones? I've produced an extract of the dataset with relevant variables - strata, psu etc below. So my question is wow wii I got about doing this merging adjoining single psu with others?
Sorry for the long post - thanks - cY
scratch of the dataset:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input int year byte quarter int(strata psu) byte region double nhispid byte hivtest float sampwt1 2000 1 5292 1 2 20000001890102 1 727.1 2000 1 5105 1 2 20000001940101 1 269.9 2000 1 5183 2 4 20000002250101 0 1592 2000 1 5069 2 3 20000004150102 1 832.2 2000 1 5168 1 2 20000007320101 0 523.4 2000 1 5088 2 4 20000007380102 0 534.3 2000 1 5124 2 3 20000018940101 1 1775.6 2000 1 5272 1 2 20000019750102 1 922.6 2000 1 5173 1 3 20000020010102 0 760.4 2000 1 5212 2 3 20000022420102 1 701.2 2000 1 5021 1 3 20000023270101 0 211.2 2000 1 5207 1 1 20000035740101 0 539.7 2000 1 5089 1 3 20000037490101 1 295.9 2000 1 5159 1 2 20000039530101 1 549.2 2000 1 5266 1 3 20000039840101 0 387.7 2000 1 5179 1 1 20000067460101 0 553 2000 1 5027 1 1 20000067500101 0 272.5 2000 1 5061 1 1 20000079580101 . 431.9 2000 1 5105 1 2 20000081530101 1 443.1 2000 1 5118 2 3 20000086190101 1 709.6 2000 1 5166 2 4 20000087520101 1 330.8 2000 1 5049 2 1 20000096220101 0 292 2000 1 5286 1 3 20000100210101 . 887.8 2000 1 5219 1 3 20000102900102 1 892.9 2000 1 5147 1 4 20000113690102 0 419.5 2000 1 5084 2 1 20000119200101 1 1163.5 2000 1 5187 1 1 20000129100101 1 620.2 2000 1 5256 1 2 20000129850102 0 847.3 2000 1 5255 2 2 20000129900101 1 478.5 2000 1 5255 2 2 20000129900202 1 478.5 2000 1 5283 2 3 20000130740101 0 907.9 2000 1 5047 1 1 20000133990101 . 246 2000 1 5314 1 3 20000147660101 1 633.6 2000 1 5186 1 1 20000149220101 1 538 2000 2 5260 2 4 20000161220101 1 239.8 2000 2 5117 1 1 20000162840102 1 708 2000 2 5126 1 1 20000168750202 1 331.2 2000 2 5040 1 2 20000169250202 0 193.8 2000 2 5011 1 3 20000180850101 . 1594.8 2000 2 5163 1 4 20000182660101 1 211 2000 2 5107 1 4 20000197770101 . 1006.4 2000 2 5116 1 1 20000200800102 1 1124.9 2000 2 5219 1 3 20000204440101 1 582.6 2000 2 5011 1 3 20000218700102 0 661.9 2000 2 5108 1 3 20000219900101 1 375 2000 2 5214 2 1 20000220760102 1 667.7 2000 2 5253 2 3 20000220770101 0 535.5 2000 2 5242 1 3 20000235040101 0 357.9 2000 2 5177 1 1 20000241600101 1 419 2000 2 5219 2 3 20000243240101 1 299.1 2000 2 5247 2 1 20000254700101 . 325.7 2000 2 5119 1 3 20000256260102 1 430.9 2000 2 5155 2 4 20000257490103 1 490.1 2000 2 5017 2 3 20000262050102 0 617.9 2000 2 5034 1 2 20000275620102 0 736.6 2000 2 5243 1 2 20000276300203 0 353.4 2000 2 5315 1 3 20000278050101 1 352.1 2000 2 5207 1 1 20000280380101 0 554.6 2000 2 5207 1 1 20000296170101 1 286.1 2000 2 5226 2 2 20000297600101 1 464.6 2000 2 5073 1 3 20000300320101 0 556.9 2000 2 5169 1 1 20000312550101 0 350.3 2000 2 5034 1 2 20000313190101 1 843.3 2000 3 5073 2 3 20000348130101 1 255.4 2000 3 5008 2 4 20000351460101 0 310.1 2000 3 5277 2 4 20000352650102 0 336.6 2000 3 5027 2 1 20000352960104 0 637.8 2000 3 5103 2 3 20000368190102 . 381.3 2000 3 5293 2 2 20000370910101 1 622.4 2000 3 5260 2 4 20000372120101 1 325.5 2000 3 5059 1 4 20000372610101 1 722.4 2000 3 5214 2 1 20000377200101 1 730.5 2000 3 5073 1 3 20000392570101 0 555.4 2000 3 5066 2 2 20000395560101 1 616 2000 3 5020 2 4 20000407840101 1 206.4 2000 3 5160 2 1 20000408940101 0 299.6 2000 3 5207 1 1 20000410710101 1 560.8 2000 3 5187 1 1 20000410800103 1 601.9 2000 3 5322 1 3 20000411280102 1 600.9 2000 3 5195 1 4 20000415230101 0 413.4 2000 3 5102 1 3 20000415390101 1 1781.5 2000 3 5042 2 3 20000415960101 1 377 2000 3 5071 2 4 20000428620101 1 588.1 2000 3 5073 2 3 20000429040101 1 392.2 2000 3 5082 1 4 20000430830101 1 349.8 2000 3 5289 2 1 20000431010104 0 1931.7 2000 3 5239 2 3 20000432690106 1 2670 2000 3 5027 2 1 20000433890101 . 288.9 2000 3 5085 2 3 20000435480101 1 504.6 2000 3 5059 1 4 20000446080101 . 294.6 2000 3 5293 2 2 20000448520101 1 423.3 2000 3 5207 1 1 20000449450102 1 433.2 2000 3 5216 1 1 20000452410101 1 337.5 2000 3 5068 1 1 20000452450102 0 706.7 2000 3 5160 1 1 20000452460101 1 358.5 2000 3 5066 2 2 20000453240102 0 649.9 2000 3 5177 2 1 20000453640101 0 848 2000 3 5270 2 3 20000454010101 0 481.1 2000 3 5040 1 2 20000454490101 1 738.7 2000 3 5177 2 1 20000473700101 0 682.1 end label values quarter QUARTER label def QUARTER 1 "Quarter 1", modify label def QUARTER 2 "Quarter 2", modify label def QUARTER 3 "Quarter 3", modify label values region REGION label def REGION 1 "Northeast", modify label def REGION 2 "North Central/Midwest", modify label def REGION 3 "South", modify label def REGION 4 "West", modify label values hivtest yesno_10 label def yesno_10 0 "No", modify label def yesno_10 1 "Yes", modify
Comment