Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Strata omitted because they contain no subpopulation members.

    Hello, Folks,

    I have posted here before regarding this subject. To recap, I am using the National Health Interview Survey (NHIS) to fit an SEM model. I restricted my analysis to a sub-population (called afim1, with about 1700 unweighted cases - see data extract below). Results from my analysis continually state that a lot of strata (over 200) were "omitted because they contain no subpopulation members". I used svydes if afim1==1 to check the extent of singleton units in the data, and part of the results are posted below:


    Code:
    Survey: Describing stage 1 sampling units
    
          pweight: sampwt1
              VCE: linearized
      Single unit: scaled
         Strata 1: strata
             SU 1: psu
            FPC 1: <zero>
    
                                          #Obs per Unit
                                  ----------------------------
    Stratum    #Units     #Obs      min       mean      max   
    --------  --------  --------  --------  --------  --------
        5002         1*        1         1       1.0         1
        5007         1*        5         5       5.0         5
        5008         2         3         1       1.5         2
        5009         1*        2         2       2.0         2
        5011         2         8         4       4.0         4
        5012         2         5         1       2.5         4
        5013         2         9         1       4.5         8
        5014         1*        1         1       1.0         1
        5016         1*        1         1       1.0         1
        5017         1*        1         1       1.0         1
        5020         2         5         1       2.5         4
        5021         2         2         1       1.0         1
        5022         2         4         2       2.0         2
        5024         2         3         1       1.5         2
        5027         2        24         7      12.0        17
        5028         1*        1         1       1.0         1
        5030         1*        1         1       1.0         1
        5031         2         2         1       1.0         1
        5033         1*        1         1       1.0         1
        5034         1*        3         3       3.0         3
    
        
    
        6261         1*        1         1       1.0         1
        6262         1*        2         2       2.0         2
        6264         2        15         5       7.5        10
        6265         2        12         4       6.0         8
        6266         2         2         1       1.0         1
        6267         1*        2         2       2.0         2
        6268         1*        1         1       1.0         1
        6271         1*        6         6       6.0         6
        6272         2        11         4       5.5         7
        6273         1*        1         1       1.0         1
        6274         1*        1         1       1.0         1
        6275         1*        3         3       3.0         3
        6276         2         4         1       2.0         3
        6278         2         3         1       1.5         2
        6279         1*        2         2       2.0         2
        6281         1*        2         2       2.0         2
        6283         1*        2         2       2.0         2
        6284         1*        1         1       1.0         1
        6285         1*        2         2       2.0         2
        6286         1*        1         1       1.0         1
        6287         1*        1         1       1.0         1
        6289         1*        2         2       2.0         2
        6290         1*        1         1       1.0         1
        6292         1*        1         1       1.0         1
        6293         1*        1         1       1.0         1
    --------  --------  --------  --------  --------  --------
         441       644     1,720         1       2.7        25
    
                         312,967 = #Obs with missing values in the 
                        --------   survey characteristics
                         314,687

    I realize that there are a number of PSU's with few observations (the ones with 1*). I know others have suggested a number of options including modifying the svy singleunit option, but none of this have worked. I need to focus my analysis on this subpopulation, hence I thinking of a way to combine some of the singleton strata with adjoining ones? I've produced an extract of the dataset with relevant variables - strata, psu etc below. So my question is wow wii I got about doing this merging adjoining single psu with others?

    Sorry for the long post - thanks - cY

    scratch of the dataset:

    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input int year byte quarter int(strata psu) byte region double nhispid byte hivtest float sampwt1
    2000 1 5292 1 2 20000001890102 1  727.1
    2000 1 5105 1 2 20000001940101 1  269.9
    2000 1 5183 2 4 20000002250101 0   1592
    2000 1 5069 2 3 20000004150102 1  832.2
    2000 1 5168 1 2 20000007320101 0  523.4
    2000 1 5088 2 4 20000007380102 0  534.3
    2000 1 5124 2 3 20000018940101 1 1775.6
    2000 1 5272 1 2 20000019750102 1  922.6
    2000 1 5173 1 3 20000020010102 0  760.4
    2000 1 5212 2 3 20000022420102 1  701.2
    2000 1 5021 1 3 20000023270101 0  211.2
    2000 1 5207 1 1 20000035740101 0  539.7
    2000 1 5089 1 3 20000037490101 1  295.9
    2000 1 5159 1 2 20000039530101 1  549.2
    2000 1 5266 1 3 20000039840101 0  387.7
    2000 1 5179 1 1 20000067460101 0    553
    2000 1 5027 1 1 20000067500101 0  272.5
    2000 1 5061 1 1 20000079580101 .  431.9
    2000 1 5105 1 2 20000081530101 1  443.1
    2000 1 5118 2 3 20000086190101 1  709.6
    2000 1 5166 2 4 20000087520101 1  330.8
    2000 1 5049 2 1 20000096220101 0    292
    2000 1 5286 1 3 20000100210101 .  887.8
    2000 1 5219 1 3 20000102900102 1  892.9
    2000 1 5147 1 4 20000113690102 0  419.5
    2000 1 5084 2 1 20000119200101 1 1163.5
    2000 1 5187 1 1 20000129100101 1  620.2
    2000 1 5256 1 2 20000129850102 0  847.3
    2000 1 5255 2 2 20000129900101 1  478.5
    2000 1 5255 2 2 20000129900202 1  478.5
    2000 1 5283 2 3 20000130740101 0  907.9
    2000 1 5047 1 1 20000133990101 .    246
    2000 1 5314 1 3 20000147660101 1  633.6
    2000 1 5186 1 1 20000149220101 1    538
    2000 2 5260 2 4 20000161220101 1  239.8
    2000 2 5117 1 1 20000162840102 1    708
    2000 2 5126 1 1 20000168750202 1  331.2
    2000 2 5040 1 2 20000169250202 0  193.8
    2000 2 5011 1 3 20000180850101 . 1594.8
    2000 2 5163 1 4 20000182660101 1    211
    2000 2 5107 1 4 20000197770101 . 1006.4
    2000 2 5116 1 1 20000200800102 1 1124.9
    2000 2 5219 1 3 20000204440101 1  582.6
    2000 2 5011 1 3 20000218700102 0  661.9
    2000 2 5108 1 3 20000219900101 1    375
    2000 2 5214 2 1 20000220760102 1  667.7
    2000 2 5253 2 3 20000220770101 0  535.5
    2000 2 5242 1 3 20000235040101 0  357.9
    2000 2 5177 1 1 20000241600101 1    419
    2000 2 5219 2 3 20000243240101 1  299.1
    2000 2 5247 2 1 20000254700101 .  325.7
    2000 2 5119 1 3 20000256260102 1  430.9
    2000 2 5155 2 4 20000257490103 1  490.1
    2000 2 5017 2 3 20000262050102 0  617.9
    2000 2 5034 1 2 20000275620102 0  736.6
    2000 2 5243 1 2 20000276300203 0  353.4
    2000 2 5315 1 3 20000278050101 1  352.1
    2000 2 5207 1 1 20000280380101 0  554.6
    2000 2 5207 1 1 20000296170101 1  286.1
    2000 2 5226 2 2 20000297600101 1  464.6
    2000 2 5073 1 3 20000300320101 0  556.9
    2000 2 5169 1 1 20000312550101 0  350.3
    2000 2 5034 1 2 20000313190101 1  843.3
    2000 3 5073 2 3 20000348130101 1  255.4
    2000 3 5008 2 4 20000351460101 0  310.1
    2000 3 5277 2 4 20000352650102 0  336.6
    2000 3 5027 2 1 20000352960104 0  637.8
    2000 3 5103 2 3 20000368190102 .  381.3
    2000 3 5293 2 2 20000370910101 1  622.4
    2000 3 5260 2 4 20000372120101 1  325.5
    2000 3 5059 1 4 20000372610101 1  722.4
    2000 3 5214 2 1 20000377200101 1  730.5
    2000 3 5073 1 3 20000392570101 0  555.4
    2000 3 5066 2 2 20000395560101 1    616
    2000 3 5020 2 4 20000407840101 1  206.4
    2000 3 5160 2 1 20000408940101 0  299.6
    2000 3 5207 1 1 20000410710101 1  560.8
    2000 3 5187 1 1 20000410800103 1  601.9
    2000 3 5322 1 3 20000411280102 1  600.9
    2000 3 5195 1 4 20000415230101 0  413.4
    2000 3 5102 1 3 20000415390101 1 1781.5
    2000 3 5042 2 3 20000415960101 1    377
    2000 3 5071 2 4 20000428620101 1  588.1
    2000 3 5073 2 3 20000429040101 1  392.2
    2000 3 5082 1 4 20000430830101 1  349.8
    2000 3 5289 2 1 20000431010104 0 1931.7
    2000 3 5239 2 3 20000432690106 1   2670
    2000 3 5027 2 1 20000433890101 .  288.9
    2000 3 5085 2 3 20000435480101 1  504.6
    2000 3 5059 1 4 20000446080101 .  294.6
    2000 3 5293 2 2 20000448520101 1  423.3
    2000 3 5207 1 1 20000449450102 1  433.2
    2000 3 5216 1 1 20000452410101 1  337.5
    2000 3 5068 1 1 20000452450102 0  706.7
    2000 3 5160 1 1 20000452460101 1  358.5
    2000 3 5066 2 2 20000453240102 0  649.9
    2000 3 5177 2 1 20000453640101 0    848
    2000 3 5270 2 3 20000454010101 0  481.1
    2000 3 5040 1 2 20000454490101 1  738.7
    2000 3 5177 2 1 20000473700101 0  682.1
    end
    label values quarter QUARTER
    label def QUARTER 1 "Quarter 1", modify
    label def QUARTER 2 "Quarter 2", modify
    label def QUARTER 3 "Quarter 3", modify
    label values region REGION
    label def REGION 1 "Northeast", modify
    label def REGION 2 "North Central/Midwest", modify
    label def REGION 3 "South", modify
    label def REGION 4 "West", modify
    label values hivtest yesno_10
    label def yesno_10 0 "No", modify
    label def yesno_10 1 "Yes", modify

  • #2
    The strata with neighboring numbers are not actually geographic neighbors, so merging them has little justification. The Variance Estimation Guidance, NHIS 2016 , page 3, has this to say about the stratum and PSU variables (PSTRAT and PPSU):
    As discussed above, in order to mask true geographical locations, the PSTRAT and PPSU levels are pseudo-levels or simplified versions of the true NHIS sample design variables. Analysts are cautioned that these simplified design structures are not designed to support geographical analyses below the Census Region level.
    To address the single-unit problem, Stata provides the singleunit() option in svyset. I would choose singleunit(scaled), but you might try the others to see how how much of a difference the choice makes. (Opinions differ: see this recent post.) . Of course you will also need the subpop() option to restrict analyses to the "afm1" subpopulation.
    Last edited by Steve Samuels; 23 Apr 2018, 20:01.
    Steve Samuels
    Statistical Consulting
    [email protected]

    Stata 14.2

    Comment


    • #3
      thanks very much - I will try that. best - cY

      Comment

      Working...
      X