Hello everyone!
I am working with Mixed Models. I am using Stata13 (Windows 10).
I have data from a longitudinal cohort study. We have measured certain anthropometrical measurements (such as weight, height, BMI, waist circumference etc) in the same subjects at three different time points (ages 15 years, 18 years and 25 years) and want to know if there is a difference in anthropometrical measurements between a certain transcription factor genotypes.
My model looks like this:
I have a question about how to interpret the model and the marginal effects (ME).
Can I say: The linear mixed-effects regression model showed a significant difference in BMI between male subjects with AP2Bgeno group 2 and AP2Bgeno grooup 3 (p = 0.013). Group 2 compared to group 3, had significantly lower BMI at ages 15 years (ME 68.6 percentage points, p = 0.013), 18 years (ME 69.0 percentage points, p = 0.026) and 25 years (ME 81.7 percentage points, p = 0.032).
Should I present the p value or CI with ME?
I greatly appreciate all the help.
Best regards,
Urmeli
I am working with Mixed Models. I am using Stata13 (Windows 10).
I have data from a longitudinal cohort study. We have measured certain anthropometrical measurements (such as weight, height, BMI, waist circumference etc) in the same subjects at three different time points (ages 15 years, 18 years and 25 years) and want to know if there is a difference in anthropometrical measurements between a certain transcription factor genotypes.
My model looks like this:
Code:
. mixed BMI time##ib3.AP2bgeno if sex==1 || ID: time, reml cov(unstructured) Performing EM optimization: Performing gradient-based optimization: Iteration 0: log restricted-likelihood = -2682.4845 Iteration 1: log restricted-likelihood = -2678.653 Iteration 2: log restricted-likelihood = -2678.5355 Iteration 3: log restricted-likelihood = -2678.5355 Computing standard errors: Mixed-effects REML regression Number of obs = 1177 Group variable: ID Number of groups = 494 Obs per group: min = 1 avg = 2.4 max = 3 Wald chi2(8) = 1352.10 Log restricted-likelihood = -2678.5355 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------- BMI | Coef. Std. Err. z P>|z| [95% Conf. Interval] --------------+---------------------------------------------------------------- time | 18 | 2.244071 .1322267 16.97 0.000 1.984911 2.50323 25 | 4.810346 .173599 27.71 0.000 4.470099 5.150594 | AP2bgeno | 1 | -.5558766 .5341458 -1.04 0.298 -1.602783 .4910299 2 | -.6856956 .2769243 -2.48 0.013 -1.228457 -.1429338 | time#AP2bgeno | 18 1 | -.1380638 .3919103 -0.35 0.725 -.9061938 .6300663 18 2 | -.0047683 .2105343 -0.02 0.982 -.417408 .4078714 25 1 | -.7752342 .5282823 -1.47 0.142 -1.810648 .2601801 25 2 | -.1308186 .276787 -0.47 0.636 -.6733111 .4116738 | _cons | 20.6324 .1779103 115.97 0.000 20.2837 20.98109 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ ID: Unstructured | var(time) | .0340546 .0054172 .0249329 .0465135 var(_cons) | 10.74794 1.947627 7.534937 15.33102 cov(time,_cons) | -.3869099 .0950002 -.5731068 -.200713 -----------------------------+------------------------------------------------ var(Residual) | 1.549076 .1276659 1.318019 1.820639 ------------------------------------------------------------------------------ LR test vs. linear regression: chi2(3) = 732.49 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference. . . margins time#AP2bgeno, vsquish Adjusted predictions Number of obs = 1177 Expression : Linear prediction, fixed portion, predict() ------------------------------------------------------------------------------- | Delta-method | Margin Std. Err. z P>|z| [95% Conf. Interval] --------------+---------------------------------------------------------------- time#AP2bgeno | 15 1 | 20.07652 .5036464 39.86 0.000 19.08939 21.06365 15 2 | 19.9467 .2122145 93.99 0.000 19.53077 20.36263 15 3 | 20.6324 .1779103 115.97 0.000 20.2837 20.98109 18 1 | 22.18253 .5488286 40.42 0.000 21.10684 23.25821 18 2 | 22.186 .2405445 92.23 0.000 21.71454 22.65746 18 3 | 22.87647 .1964405 116.45 0.000 22.49145 23.26148 25 1 | 24.11163 .6839281 35.25 0.000 22.77116 25.45211 25 2 | 24.62623 .2947946 83.54 0.000 24.04844 25.20402 25 3 | 25.44274 .2398035 106.10 0.000 24.97274 25.91275 ------------------------------------------------------------------------------- . . marginsplot Variables that uniquely identify margins: time AP2bgeno . . margins time, dydx(AP2bgeno ) Conditional marginal effects Number of obs = 1177 Expression : Linear prediction, fixed portion, predict() dy/dx w.r.t. : 1.AP2bgeno 2.AP2bgeno ------------------------------------------------------------------------------ | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 1.AP2bgeno | time | 15 | -.5558766 .5341458 -1.04 0.298 -1.602783 .4910299 18 | -.6939404 .5829251 -1.19 0.234 -1.836453 .4485718 25 | -1.331111 .7247506 -1.84 0.066 -2.751596 .0893742 -------------+---------------------------------------------------------------- 2.AP2bgeno | time | 15 | -.6856956 .2769243 -2.48 0.013 -1.228457 -.1429338 18 | -.6904639 .3105649 -2.22 0.026 -1.29916 -.0817679 25 | -.8165142 .3800126 -2.15 0.032 -1.561325 -.0717032 ------------------------------------------------------------------------------ Note: dy/dx for factor levels is the discrete change from the base level. .
Can I say: The linear mixed-effects regression model showed a significant difference in BMI between male subjects with AP2Bgeno group 2 and AP2Bgeno grooup 3 (p = 0.013). Group 2 compared to group 3, had significantly lower BMI at ages 15 years (ME 68.6 percentage points, p = 0.013), 18 years (ME 69.0 percentage points, p = 0.026) and 25 years (ME 81.7 percentage points, p = 0.032).
Should I present the p value or CI with ME?
I greatly appreciate all the help.
Best regards,
Urmeli
Comment