Dear
I am trying to do GMM xtabond2 and I have few questions. My specification is measuring inequality logINEQit= a + logINEQit-1 + logM2+ logGDP growth + logInflation+ logEMPin Agric + loggdp_pc + GovEXPEN+ institutions + e. It analyses impact of institutions and financial depth on inequality, it is unbalanced panel with years 2000, 2010-2016
My command is
xtabond2 Log_WGINI l.Log_WGINI Log_Bro_Mon_GDP Log_GDP_Growth Log_INFL_DEF Log_AGR_EMP Log_EXP_GDP Log_os y57 y56 y55 y54 y53 y52 , gmm ( Log_WGINI Log_Bro_Mon_GDP Log_GDP_Growth Log_INFL_DEF Log_AGR_EMP Log_EXP_GDP Log_os , lag(2 3)collapse) ivstyle(Log_RINTR y57 y56 y55 y54 y53 y52 , equation(level) ) twostep robust small orthog
My variables are macro and there might be some collinearity
Questions:
1. Is this command correctly specified? I want GMM in levels, trying not to go to deep with lags
2. My specification is very sensitive to changes in variables (I tried without time dummies and it was more stable...but it seems that time dummies are must)
3. it is sensitive to option "collapse" (I keep less instruments than groups, but when I put collapse my significance and magnitude of the coefficients changes) do I haave to use it in an unbalanced panel
4.is there some rule or good practice about size of the correlation among variables in the specification
5. Can someone tell something on short vs long term coefficients magnitude in GMM
5. I would like to validate the results using maximum likelihood but and I have seen the command xtdpdqml but I do not know how to "translate" my xtabond conditions, also post estimation is not clear to me.
Thank you, best
rijad
My command is
xtabond2 Log_WGINI l.Log_WGINI Log_Bro_Mon_GDP Log_GDP_Growth Log_INFL_DEF Log_AGR_EMP Log_EXP_GDP Log_os y57 y56 y55 y54 y53 y52 , gmm ( Log_WGINI Log_Bro_Mon_GDP Log_GDP_Growth Log_INFL_DEF Log_AGR_EMP Log_EXP_GDP Log_os , lag(2 3)collapse) ivstyle(Log_RINTR y57 y56 y55 y54 y53 y52 , equation(level) ) twostep robust small orthog
OUTPUT is:
. xtabond2 Log_WGINI l.Log_WGINI Log_Bro_Mon_GDP Log_GDP_Growth Log_INFL_DEF Log_AGR_EMP Log_EXP_GDP Log_os y57 y56 y55 y54 y53 y52 , gmm ( Log_WGI
> NI Log_Bro_Mon_GDP Log_GDP_Growth Log_INFL_DEF Log_AGR_EMP Log_EXP_GDP Log_os , lag(2 3)collapse) ivstyle(Log_RINTR y57 y56 y55 y54 y53 y52 , e
> quation(level) ) twostep robust small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
y54 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Difference-in-Sargan/Hansen statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: Country Number of obs = 260
Time variable : year Number of groups = 80
Number of instruments = 28 Obs per group: min = 0
F(12, 79) = 5.62 avg = 3.25
Prob > F = 0.000 max = 6
---------------------------------------------------------------------------------
| Corrected
Log_WGINI | Coef. Std. Err. t P>|t| [95% Conf. Interval]
----------------+----------------------------------------------------------------
Log_WGINI |
L1. | .3934571 .1321549 2.98 0.004 .1304094 .6565047
|
Log_Bro_Mon_GDP | .2073853 .0797135 2.60 0.011 .0487196 .366051
Log_GDP_Growth | .0158236 .0332168 0.48 0.635 -.0502928 .0819399
Log_INFL_DEF | -.0106071 .0149894 -0.71 0.481 -.0404426 .0192285
Log_AGR_EMP | .0576048 .0348487 1.65 0.102 -.0117599 .1269695
Log_EXP_GDP | -.0359691 .0777016 -0.46 0.645 -.1906302 .118692
Log_os | -.8000739 .3165686 -2.53 0.013 -1.430188 -.16996
y57 | .0604502 .0249565 2.42 0.018 .0107755 .1101249
y56 | .0319879 .018417 1.74 0.086 -.0046703 .0686461
y55 | .0388815 .0214744 1.81 0.074 -.0038622 .0816253
y53 | .0166005 .0128533 1.29 0.200 -.0089834 .0421844
y52 | .0252226 .0143333 1.76 0.082 -.0033071 .0537524
_cons | 2.193212 1.012806 2.17 0.033 .1772707 4.209152
---------------------------------------------------------------------------------
Instruments for orthogonal deviations equation
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(2/3).(Log_WGINI Log_Bro_Mon_GDP Log_GDP_Growth Log_INFL_DEF Log_AGR_EMP
Log_EXP_GDP Log_os) collapsed
Instruments for levels equation
Standard
Log_RINTR y57 y56 y55 y54 y53 y52
_cons
GMM-type (missing=0, separate instruments for each period unless collapsed)
DL.(Log_WGINI Log_Bro_Mon_GDP Log_GDP_Growth Log_INFL_DEF Log_AGR_EMP
Log_EXP_GDP Log_os) collapsed
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z = -2.25 Pr > z = 0.024
Arellano-Bond test for AR(2) in first differences: z = -0.31 Pr > z = 0.758
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(15) = 14.41 Prob > chi2 = 0.495
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(15) = 10.77 Prob > chi2 = 0.768
(Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
GMM instruments for levels
Hansen test excluding group: chi2(8) = 7.85 Prob > chi2 = 0.448
Difference (null H = exogenous): chi2(7) = 2.92 Prob > chi2 = 0.892
iv(Log_RINTR y57 y56 y55 y54 y53 y52, eq(level))
Hansen test excluding group: chi2(9) = 8.65 Prob > chi2 = 0.470
Difference (null H = exogenous): chi2(6) = 2.12 Prob > chi2 = 0.908
I am trying to do GMM xtabond2 and I have few questions. My specification is measuring inequality logINEQit= a + logINEQit-1 + logM2+ logGDP growth + logInflation+ logEMPin Agric + loggdp_pc + GovEXPEN+ institutions + e. It analyses impact of institutions and financial depth on inequality, it is unbalanced panel with years 2000, 2010-2016
My command is
xtabond2 Log_WGINI l.Log_WGINI Log_Bro_Mon_GDP Log_GDP_Growth Log_INFL_DEF Log_AGR_EMP Log_EXP_GDP Log_os y57 y56 y55 y54 y53 y52 , gmm ( Log_WGINI Log_Bro_Mon_GDP Log_GDP_Growth Log_INFL_DEF Log_AGR_EMP Log_EXP_GDP Log_os , lag(2 3)collapse) ivstyle(Log_RINTR y57 y56 y55 y54 y53 y52 , equation(level) ) twostep robust small orthog
My variables are macro and there might be some collinearity
Questions:
1. Is this command correctly specified? I want GMM in levels, trying not to go to deep with lags
2. My specification is very sensitive to changes in variables (I tried without time dummies and it was more stable...but it seems that time dummies are must)
3. it is sensitive to option "collapse" (I keep less instruments than groups, but when I put collapse my significance and magnitude of the coefficients changes) do I haave to use it in an unbalanced panel
4.is there some rule or good practice about size of the correlation among variables in the specification
5. Can someone tell something on short vs long term coefficients magnitude in GMM
5. I would like to validate the results using maximum likelihood but and I have seen the command xtdpdqml but I do not know how to "translate" my xtabond conditions, also post estimation is not clear to me.
Thank you, best
rijad
My command is
xtabond2 Log_WGINI l.Log_WGINI Log_Bro_Mon_GDP Log_GDP_Growth Log_INFL_DEF Log_AGR_EMP Log_EXP_GDP Log_os y57 y56 y55 y54 y53 y52 , gmm ( Log_WGINI Log_Bro_Mon_GDP Log_GDP_Growth Log_INFL_DEF Log_AGR_EMP Log_EXP_GDP Log_os , lag(2 3)collapse) ivstyle(Log_RINTR y57 y56 y55 y54 y53 y52 , equation(level) ) twostep robust small orthog
OUTPUT is:
. xtabond2 Log_WGINI l.Log_WGINI Log_Bro_Mon_GDP Log_GDP_Growth Log_INFL_DEF Log_AGR_EMP Log_EXP_GDP Log_os y57 y56 y55 y54 y53 y52 , gmm ( Log_WGI
> NI Log_Bro_Mon_GDP Log_GDP_Growth Log_INFL_DEF Log_AGR_EMP Log_EXP_GDP Log_os , lag(2 3)collapse) ivstyle(Log_RINTR y57 y56 y55 y54 y53 y52 , e
> quation(level) ) twostep robust small orthog
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
y54 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Difference-in-Sargan/Hansen statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: Country Number of obs = 260
Time variable : year Number of groups = 80
Number of instruments = 28 Obs per group: min = 0
F(12, 79) = 5.62 avg = 3.25
Prob > F = 0.000 max = 6
---------------------------------------------------------------------------------
| Corrected
Log_WGINI | Coef. Std. Err. t P>|t| [95% Conf. Interval]
----------------+----------------------------------------------------------------
Log_WGINI |
L1. | .3934571 .1321549 2.98 0.004 .1304094 .6565047
|
Log_Bro_Mon_GDP | .2073853 .0797135 2.60 0.011 .0487196 .366051
Log_GDP_Growth | .0158236 .0332168 0.48 0.635 -.0502928 .0819399
Log_INFL_DEF | -.0106071 .0149894 -0.71 0.481 -.0404426 .0192285
Log_AGR_EMP | .0576048 .0348487 1.65 0.102 -.0117599 .1269695
Log_EXP_GDP | -.0359691 .0777016 -0.46 0.645 -.1906302 .118692
Log_os | -.8000739 .3165686 -2.53 0.013 -1.430188 -.16996
y57 | .0604502 .0249565 2.42 0.018 .0107755 .1101249
y56 | .0319879 .018417 1.74 0.086 -.0046703 .0686461
y55 | .0388815 .0214744 1.81 0.074 -.0038622 .0816253
y53 | .0166005 .0128533 1.29 0.200 -.0089834 .0421844
y52 | .0252226 .0143333 1.76 0.082 -.0033071 .0537524
_cons | 2.193212 1.012806 2.17 0.033 .1772707 4.209152
---------------------------------------------------------------------------------
Instruments for orthogonal deviations equation
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(2/3).(Log_WGINI Log_Bro_Mon_GDP Log_GDP_Growth Log_INFL_DEF Log_AGR_EMP
Log_EXP_GDP Log_os) collapsed
Instruments for levels equation
Standard
Log_RINTR y57 y56 y55 y54 y53 y52
_cons
GMM-type (missing=0, separate instruments for each period unless collapsed)
DL.(Log_WGINI Log_Bro_Mon_GDP Log_GDP_Growth Log_INFL_DEF Log_AGR_EMP
Log_EXP_GDP Log_os) collapsed
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z = -2.25 Pr > z = 0.024
Arellano-Bond test for AR(2) in first differences: z = -0.31 Pr > z = 0.758
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(15) = 14.41 Prob > chi2 = 0.495
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(15) = 10.77 Prob > chi2 = 0.768
(Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
GMM instruments for levels
Hansen test excluding group: chi2(8) = 7.85 Prob > chi2 = 0.448
Difference (null H = exogenous): chi2(7) = 2.92 Prob > chi2 = 0.892
iv(Log_RINTR y57 y56 y55 y54 y53 y52, eq(level))
Hansen test excluding group: chi2(9) = 8.65 Prob > chi2 = 0.470
Difference (null H = exogenous): chi2(6) = 2.12 Prob > chi2 = 0.908
Comment