Greetings,
I am facing difficulty in determining what AR(p) model to specify for my regression. By trial and error depicted below, it seems to me that an AR(4) model should be specified.
For all it's worth, I attach my ACF and PACF graphs for residuals. 

Any help would be very much appreciated, thank you.
I am facing difficulty in determining what AR(p) model to specify for my regression. By trial and error depicted below, it seems to me that an AR(4) model should be specified.
Code:
. reg r L.r Source | SS df MS Number of obs = 2,347 -------------+---------------------------------- F(1, 2345) = 854.20 Model | 215.345089 1 215.345089 Prob > F = 0.0000 Residual | 591.179315 2,345 .252102053 R-squared = 0.2670 -------------+---------------------------------- Adj R-squared = 0.2667 Total | 806.524404 2,346 .343787043 Root MSE = .5021 ------------------------------------------------------------------------------ r | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- r | L1. | .5165801 .017675 29.23 0.000 .48192 .5512403 | _cons | .0002531 .0103641 0.02 0.981 -.0200706 .0205769 ------------------------------------------------------------------------------ . actest, robust Cumby-Huizinga test for autocorrelation H0: variable is MA process up to order q HA: serial correlation present at specified lags >q ----------------------------------------------------------------------------- H0: q=0 (serially uncorrelated) | H0: q=specified lag-1 HA: s.c. present at range specified | HA: s.c. present at lag specified -----------------------------------------+----------------------------------- lags | chi2 df p-val | lag | chi2 df p-val -----------+-----------------------------+-----+----------------------------- 1 - 1 | 72.136 1 0.0000 | 1 | 72.136 1 0.0000 ----------------------------------------------------------------------------- Test allows predetermined regressors/instruments Test robust to heteroskedasticity . reg r L(1/2).r Source | SS df MS Number of obs = 2,346 -------------+---------------------------------- F(2, 2343) = 502.98 Model | 242.009015 2 121.004507 Prob > F = 0.0000 Residual | 563.671128 2,343 .240576666 R-squared = 0.3004 -------------+---------------------------------- Adj R-squared = 0.2998 Total | 805.680142 2,345 .343573621 Root MSE = .49049 ------------------------------------------------------------------------------ r | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- r | L1. | .4050162 .0201763 20.07 0.000 .3654511 .4445814 L2. | .2148748 .0201672 10.65 0.000 .1753273 .2544222 | _cons | .0004264 .0101266 0.04 0.966 -.0194316 .0202844 ------------------------------------------------------------------------------ . actest, robust Cumby-Huizinga test for autocorrelation H0: variable is MA process up to order q HA: serial correlation present at specified lags >q ----------------------------------------------------------------------------- H0: q=0 (serially uncorrelated) | H0: q=specified lag-1 HA: s.c. present at range specified | HA: s.c. present at lag specified -----------------------------------------+----------------------------------- lags | chi2 df p-val | lag | chi2 df p-val -----------+-----------------------------+-----+----------------------------- 1 - 1 | 24.707 1 0.0000 | 1 | 24.707 1 0.0000 ----------------------------------------------------------------------------- Test allows predetermined regressors/instruments Test robust to heteroskedasticity . reg r L(1/3).r Source | SS df MS Number of obs = 2,345 -------------+---------------------------------- F(3, 2341) = 350.83 Model | 249.790432 3 83.2634773 Prob > F = 0.0000 Residual | 555.593235 2,341 .237331583 R-squared = 0.3102 -------------+---------------------------------- Adj R-squared = 0.3093 Total | 805.383667 2,344 .343593715 Root MSE = .48717 ------------------------------------------------------------------------------ r | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- r | L1. | .3792806 .0205235 18.48 0.000 .3390345 .4195267 L2. | .166328 .0216949 7.67 0.000 .1237849 .2088712 L3. | .1196588 .0205112 5.83 0.000 .0794368 .1598807 | _cons | .0004293 .0100602 0.04 0.966 -.0192986 .0201571 ------------------------------------------------------------------------------ . actest, robust Cumby-Huizinga test for autocorrelation H0: variable is MA process up to order q HA: serial correlation present at specified lags >q ----------------------------------------------------------------------------- H0: q=0 (serially uncorrelated) | H0: q=specified lag-1 HA: s.c. present at range specified | HA: s.c. present at lag specified -----------------------------------------+----------------------------------- lags | chi2 df p-val | lag | chi2 df p-val -----------+-----------------------------+-----+----------------------------- 1 - 1 | 8.350 1 0.0039 | 1 | 8.350 1 0.0039 ----------------------------------------------------------------------------- Test allows predetermined regressors/instruments Test robust to heteroskedasticity . reg r L(1/4).r Source | SS df MS Number of obs = 2,344 -------------+---------------------------------- F(4, 2339) = 268.14 Model | 253.178313 4 63.2945781 Prob > F = 0.0000 Residual | 552.116947 2,339 .236048289 R-squared = 0.3144 -------------+---------------------------------- Adj R-squared = 0.3132 Total | 805.29526 2,343 .343702629 Root MSE = .48585 ------------------------------------------------------------------------------ r | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- r | L1. | .3706284 .0206157 17.98 0.000 .3302014 .4110555 L2. | .1549074 .0219103 7.07 0.000 .1119418 .1978729 L3. | .0928425 .0219076 4.24 0.000 .0498822 .1358027 L4. | .0720645 .0206045 3.50 0.000 .0316596 .1124695 | _cons | .0001068 .0100351 0.01 0.992 -.0195718 .0197855 ------------------------------------------------------------------------------ . actest, robust Cumby-Huizinga test for autocorrelation H0: variable is MA process up to order q HA: serial correlation present at specified lags >q ----------------------------------------------------------------------------- H0: q=0 (serially uncorrelated) | H0: q=specified lag-1 HA: s.c. present at range specified | HA: s.c. present at lag specified -----------------------------------------+----------------------------------- lags | chi2 df p-val | lag | chi2 df p-val -----------+-----------------------------+-----+----------------------------- 1 - 1 | 1.225 1 0.2684 | 1 | 1.225 1 0.2684 ----------------------------------------------------------------------------- Test allows predetermined regressors/instruments Test robust to heteroskedasticity . **ACTEST COMMAND SUGGESTS AR(4)** . reg r L(1/4).r Source | SS df MS Number of obs = 2,344 -------------+---------------------------------- F(4, 2339) = 268.14 Model | 253.178313 4 63.2945781 Prob > F = 0.0000 Residual | 552.116947 2,339 .236048289 R-squared = 0.3144 -------------+---------------------------------- Adj R-squared = 0.3132 Total | 805.29526 2,343 .343702629 Root MSE = .48585 ------------------------------------------------------------------------------ r | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- r | L1. | .3706284 .0206157 17.98 0.000 .3302014 .4110555 L2. | .1549074 .0219103 7.07 0.000 .1119418 .1978729 L3. | .0928425 .0219076 4.24 0.000 .0498822 .1358027 L4. | .0720645 .0206045 3.50 0.000 .0316596 .1124695 | _cons | .0001068 .0100351 0.01 0.992 -.0195718 .0197855 ------------------------------------------------------------------------------ . estat bgodfrey Breusch-Godfrey LM test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 1 | 7.146 1 0.0075 --------------------------------------------------------------------------- H0: no serial correlation . reg r L(1/5).r Source | SS df MS Number of obs = 2,343 -------------+---------------------------------- F(5, 2337) = 217.60 Model | 253.895887 5 50.7791773 Prob > F = 0.0000 Residual | 545.359929 2,337 .233358977 R-squared = 0.3177 -------------+---------------------------------- Adj R-squared = 0.3162 Total | 799.255815 2,342 .34127063 Root MSE = .48307 ------------------------------------------------------------------------------ r | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- r | L1. | .3662664 .0205618 17.81 0.000 .3259452 .4065876 L2. | .1551372 .0218684 7.09 0.000 .1122537 .1980207 L3. | .0937314 .022019 4.26 0.000 .0505525 .1369103 L4. | .0703822 .0218659 3.22 0.001 .0275036 .1132607 L5. | .0109803 .0205456 0.53 0.593 -.0293091 .0512698 | _cons | -.0010002 .0099799 -0.10 0.920 -.0205707 .0185702 ------------------------------------------------------------------------------ . estat bgodfrey Breusch-Godfrey LM test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 1 | 22.015 1 0.0000 --------------------------------------------------------------------------- H0: no serial correlation . reg r L(1/6).r Source | SS df MS Number of obs = 2,342 -------------+---------------------------------- F(6, 2335) = 181.23 Model | 251.154059 6 41.8590099 Prob > F = 0.0000 Residual | 539.330146 2,335 .230976508 R-squared = 0.3177 -------------+---------------------------------- Adj R-squared = 0.3160 Total | 790.484206 2,341 .33766946 Root MSE = .4806 ------------------------------------------------------------------------------ r | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- r | L1. | .3555388 .0205829 17.27 0.000 .3151761 .3959014 L2. | .1525293 .0218011 7.00 0.000 .1097778 .1952809 L3. | .0918417 .0219918 4.18 0.000 .0487162 .1349672 L4. | .0658227 .0219911 2.99 0.003 .0226985 .1089468 L5. | -.00477 .0218076 -0.22 0.827 -.0475342 .0379943 L6. | .0498962 .0204418 2.44 0.015 .0098103 .0899821 | _cons | -.0019319 .009931 -0.19 0.846 -.0214064 .0175426 ------------------------------------------------------------------------------ . estat bgodfrey Breusch-Godfrey LM test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 1 | 2.459 1 0.1169 --------------------------------------------------------------------------- H0: no serial correlation ** B-G LM test suggests AR(6)**
Any help would be very much appreciated, thank you.