Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Contradicting Stationarity results (ACF and Unit Root Tests)

    I have done the Phillips-Perron Test and Augmented DF Test on my data and both point out that I have a stationary time series data. However, my ACF says otherwise. A symptom of non-stationarity is that the plot of the estimated autocorrelations dies down very slowly with increasing j, this provides a visual symptom of nonstationarity. How should I decide if my data are stationary? Below is my ACF:

    Click image for larger version

Name:	stat.png
Views:	1
Size:	13.1 KB
ID:	1436152


    My unit root tests results are as follows, and since I can't determine if there's a trend visually, I tried both specification with and without trend:

    . pperron csad

    Phillips-Perron test for unit root Number of obs = 2347
    Newey-West lags = 8

    ---------- Interpolated Dickey-Fuller ---------
    Test 1% Critical 5% Critical 10% Critical
    Statistic Value Value Value
    ------------------------------------------------------------------------------
    Z(rho) -1084.810 -20.700 -14.100 -11.300
    Z(t) -25.541 -3.430 -2.860 -2.570
    ------------------------------------------------------------------------------
    MacKinnon approximate p-value for Z(t) = 0.0000

    . pperron csad, trend

    Phillips-Perron test for unit root Number of obs = 2347
    Newey-West lags = 8

    ---------- Interpolated Dickey-Fuller ---------
    Test 1% Critical 5% Critical 10% Critical
    Statistic Value Value Value
    ------------------------------------------------------------------------------
    Z(rho) -1103.166 -29.500 -21.800 -18.300
    Z(t) -25.787 -3.960 -3.410 -3.120
    ------------------------------------------------------------------------------
    MacKinnon approximate p-value for Z(t) = 0.0000

    . dfuller csad, lag(0)

    Dickey-Fuller test for unit root Number of obs = 2347

    ---------- Interpolated Dickey-Fuller ---------
    Test 1% Critical 5% Critical 10% Critical
    Statistic Value Value Value
    ------------------------------------------------------------------------------
    Z(t) -23.996 -3.430 -2.860 -2.570
    ------------------------------------------------------------------------------
    MacKinnon approximate p-value for Z(t) = 0.0000

    .




  • #2
    You data are stationary according to the ADF test, since the statistic is smaller than your three critical values. See other reply for clarification

    Comment


    • #3
      Thank you for your help, Stefano!

      Comment

      Working...
      X