I am struggling with GMM and XTABOND2. Authors of academic papers don't mention how many instruments they get after the computation of the model. As I understand the number of instruments cannot be greater than the number of groups. I read the materials from Roodman (2009) and Sebastian Kripfganz warning about the number of instruments. I am still not clear and have a lot of doubts about my output. My data have N=38 and T=30. 1 dependent and 7 independent variables. I am using 4 exogenous as instruments. I am coding the following:
xtabond2 gdp L.gdp fdi gfcf iq hc fd ele inf, gmm(L.gdp fdi gfcf inf, laglimits(2 2) eq(level) collapse) gmm(L.gdp fdi gfcf inf, laglimits(0 0)eq(diff) collapse) iv( ele hc iq fd, eq(level)) twostep robust nodiffsargan
Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: egcode Number of obs = 1102
Time variable : year Number of groups = 38
Number of instruments = 13 Obs per group: min = 29
Wald chi2(8) = 2416.01 avg = 29.00
Prob > chi2 = 0.000 max = 29
------------------------------------------------------------------------------
| Corrected
gdppc | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
gdppc |
L1. | -.9990342 .0438995 -22.76 0.000 -1.085076 -.9129927
fdi | .2112965 .2501171 0.84 0.398 -.2789239 .701517
gfcf | .0605189 .2211572 0.27 0.784 -.3729413 .4939791
iq | 3.318989 1.314757 2.52 0.012 .7421124 5.895865
hc | 2.26246 .7812645 2.90 0.004 .7312095 3.79371
fd | 2.798065 1.395826 2.00 0.045 .0622961 5.533834
ele | -1.650007 .4392249 -3.76 0.000 -2.510872 -.7891425
inf | -.000655 .000234 -2.80 0.005 -.0011135 -.0001964
_cons | 22.31125 8.096417 2.76 0.006 6.442562 38.17993
------------------------------------------------------------------------------
Instruments for first differences equation
GMM-type (missing=0, separate instruments for each period unless collapsed)
.(L.gdppc fdi gfcf inflation) collapsed
Instruments for levels equation
Standard
lnele lnhc lniq lnfd
_cons
GMM-type (missing=0, separate instruments for each period unless collapsed)
DL2.(L.gdppc fdi gfcf inflation) collapsed
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z = 3.42 Pr > z = 0.001
Arellano-Bond test for AR(2) in first differences: z = -4.18 Pr > z = 0.000
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(4) = 19.21 Prob > chi2 = 0.001
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(4) = 6.69 Prob > chi2 = 0.153
(Robust, but weakened by many instruments.)
I am estimating the model and focus a lot on the number of instruments, is it the right approach?
Best regards,
Gao Yili
xtabond2 gdp L.gdp fdi gfcf iq hc fd ele inf, gmm(L.gdp fdi gfcf inf, laglimits(2 2) eq(level) collapse) gmm(L.gdp fdi gfcf inf, laglimits(0 0)eq(diff) collapse) iv( ele hc iq fd, eq(level)) twostep robust nodiffsargan
Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: egcode Number of obs = 1102
Time variable : year Number of groups = 38
Number of instruments = 13 Obs per group: min = 29
Wald chi2(8) = 2416.01 avg = 29.00
Prob > chi2 = 0.000 max = 29
------------------------------------------------------------------------------
| Corrected
gdppc | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
gdppc |
L1. | -.9990342 .0438995 -22.76 0.000 -1.085076 -.9129927
fdi | .2112965 .2501171 0.84 0.398 -.2789239 .701517
gfcf | .0605189 .2211572 0.27 0.784 -.3729413 .4939791
iq | 3.318989 1.314757 2.52 0.012 .7421124 5.895865
hc | 2.26246 .7812645 2.90 0.004 .7312095 3.79371
fd | 2.798065 1.395826 2.00 0.045 .0622961 5.533834
ele | -1.650007 .4392249 -3.76 0.000 -2.510872 -.7891425
inf | -.000655 .000234 -2.80 0.005 -.0011135 -.0001964
_cons | 22.31125 8.096417 2.76 0.006 6.442562 38.17993
------------------------------------------------------------------------------
Instruments for first differences equation
GMM-type (missing=0, separate instruments for each period unless collapsed)
.(L.gdppc fdi gfcf inflation) collapsed
Instruments for levels equation
Standard
lnele lnhc lniq lnfd
_cons
GMM-type (missing=0, separate instruments for each period unless collapsed)
DL2.(L.gdppc fdi gfcf inflation) collapsed
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z = 3.42 Pr > z = 0.001
Arellano-Bond test for AR(2) in first differences: z = -4.18 Pr > z = 0.000
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(4) = 19.21 Prob > chi2 = 0.001
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(4) = 6.69 Prob > chi2 = 0.153
(Robust, but weakened by many instruments.)
I am estimating the model and focus a lot on the number of instruments, is it the right approach?
Best regards,
Gao Yili
Comment