Hi,
I have a panel data of more than 2000 units in an organization over two years (a very small sample is below). I want to predict the effects of unit engagement on unit performance. Performance is measured monthly at unit level.
The problem is that engagement is measured on a daily basis and I need to show that :
1) engagement actually exists at the unit level and it can be considered as a unit level variable, so I can aggregate individual responses to the unit-month level.
2) unit-month level engagement is a pretty stable variable over time. My question is how I can show these.
1) How to show that engagement is a unit characteristic? I thought of using loneway for this purpose but I am not sure if it's the right tool and how I can interpret the output. Is Est. reliability of a group mean what I need here or ICC output?
Here's the code I used:
2) How to show that unit engagement is pretty stable over time?
For question 2 I used
For this part the icc in my actual data is 0.6 and the Est. reliability of a unit mean is 0.97. How should I interpret these numbers?
I really appreciate your help.
----------------------- copy starting from the next line -----------------------
I have a panel data of more than 2000 units in an organization over two years (a very small sample is below). I want to predict the effects of unit engagement on unit performance. Performance is measured monthly at unit level.
The problem is that engagement is measured on a daily basis and I need to show that :
1) engagement actually exists at the unit level and it can be considered as a unit level variable, so I can aggregate individual responses to the unit-month level.
2) unit-month level engagement is a pretty stable variable over time. My question is how I can show these.
1) How to show that engagement is a unit characteristic? I thought of using loneway for this purpose but I am not sure if it's the right tool and how I can interpret the output. Is Est. reliability of a group mean what I need here or ICC output?
Here's the code I used:
Code:
egen unit_ndate=group(unit ndate) egen unit_yrmo=group(unit yrmo) loneway engagement unit_ndate loneway engagement unit_yrmo
2) How to show that unit engagement is pretty stable over time?
For question 2 I used
Code:
bysort unit yrmo: egen unit_engagement=mean(engagement) egen flag=tag(unit yrmo) loneway unit_engagement unit if flag
I really appreciate your help.
----------------------- copy starting from the next line -----------------------
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input int unit float(year month day ndate) byte engagement float performance 3 2015 1 2 20090 4 3 3 2015 1 2 20090 4 3 3 2015 1 2 20090 1 3 3 2015 1 2 20090 1 3 3 2015 1 2 20090 5 3 3 2015 1 3 20091 4 3 3 2015 1 3 20091 4 3 3 2015 1 3 20091 3 3 3 2015 1 3 20091 3 3 3 2015 1 3 20091 1 3 3 2015 1 3 20091 2 3 3 2015 1 3 20091 1 3 3 2015 1 3 20091 5 3 3 2015 1 3 20091 3 3 3 2015 1 4 20092 3 3 3 2015 1 4 20092 1 3 3 2015 1 4 20092 3 3 3 2015 1 4 20092 1 3 3 2015 1 4 20092 4 3 3 2015 1 4 20092 4 3 3 2015 1 5 20093 1 3 3 2015 1 5 20093 3 3 3 2015 1 5 20093 4 3 3 2015 1 5 20093 5 3 3 2015 1 5 20093 5 3 3 2015 1 5 20093 5 3 3 2015 1 5 20093 5 3 3 2015 1 5 20093 4 3 3 2015 1 5 20093 4 3 3 2015 1 6 20094 5 3 3 2015 1 6 20094 5 3 3 2015 1 6 20094 5 3 3 2015 1 6 20094 3 3 3 2015 1 6 20094 4 3 3 2015 1 6 20094 4 3 3 2015 1 7 20095 4 3 3 2015 1 7 20095 4 3 3 2015 1 7 20095 3 3 3 2015 1 7 20095 3 3 3 2015 1 9 20097 4 3 3 2015 1 9 20097 4 3 3 2015 1 9 20097 5 3 3 2015 1 9 20097 4 3 3 2015 1 9 20097 4 3 3 2015 1 9 20097 5 3 3 2015 2 1 20120 3 3.5 3 2015 2 1 20120 3 3.5 3 2015 2 1 20120 3 3.5 3 2015 2 1 20120 3 3.5 3 2015 2 3 20122 4 3.5 3 2015 2 3 20122 3 3.5 3 2015 2 3 20122 3 3.5 3 2015 2 3 20122 5 3.5 3 2015 2 3 20122 3 3.5 3 2015 2 3 20122 4 3.5 3 2015 2 3 20122 3 3.5 3 2015 2 4 20123 4 3.5 3 2015 2 4 20123 3 3.5 3 2015 2 4 20123 4 3.5 3 2015 2 4 20123 4 3.5 3 2015 2 4 20123 3 3.5 3 2015 2 4 20123 4 3.5 3 2015 2 5 20124 3 3.5 3 2015 2 5 20124 4 3.5 3 2015 2 5 20124 3 3.5 3 2015 2 5 20124 4 3.5 3 2015 2 5 20124 3 3.5 3 2015 2 5 20124 3 3.5 3 2015 2 5 20124 3 3.5 3 2015 2 6 20125 5 3.5 3 2015 2 6 20125 3 3.5 3 2015 2 6 20125 4 3.5 3 2015 2 6 20125 4 3.5 3 2015 2 7 20126 3 3.5 3 2015 2 7 20126 3 3.5 3 2015 2 7 20126 5 3.5 3 2015 2 7 20126 3 3.5 3 2015 2 7 20126 4 3.5 3 2015 2 7 20126 4 3.5 3 2015 2 8 20127 5 3.5 3 2015 2 8 20127 3 3.5 3 2015 2 8 20127 4 3.5 3 2015 2 8 20127 5 3.5 3 2015 2 8 20127 3 3.5 3 2015 2 8 20127 4 3.5 3 2015 2 8 20127 3 3.5 4 2015 1 3 20091 5 3.2 4 2015 1 3 20091 4 3.2 4 2015 1 3 20091 4 3.2 4 2015 1 3 20091 5 3.2 4 2015 1 3 20091 5 3.2 4 2015 1 3 20091 3 3.2 4 2015 1 4 20092 5 3.2 4 2015 1 4 20092 5 3.2 4 2015 1 4 20092 4 3.2 4 2015 1 4 20092 4 3.2 4 2015 1 4 20092 3 3.2 4 2015 1 6 20094 5 3.2 4 2015 1 6 20094 4 3.2 4 2015 1 6 20094 5 3.2 4 2015 1 6 20094 5 3.2 4 2015 1 6 20094 4 3.2 4 2015 1 6 20094 5 3.2 4 2015 1 6 20094 4 3.2 4 2015 1 6 20094 5 3.2 4 2015 1 6 20094 4 3.2 4 2015 2 1 20120 2 3.7 4 2015 2 1 20120 1 3.7 4 2015 2 1 20120 2 3.7 4 2015 2 1 20120 3 3.7 4 2015 2 1 20120 3 3.7 4 2015 2 5 20124 3 3.7 4 2015 2 5 20124 2 3.7 4 2015 2 5 20124 3 3.7 4 2015 2 5 20124 3 3.7 4 2015 2 5 20124 3 3.7 4 2015 2 5 20124 4 3.7 4 2015 2 7 20126 4 3.7 4 2015 2 7 20126 4 3.7 4 2015 2 7 20126 2 3.7 4 2015 2 7 20126 2 3.7 4 2015 2 7 20126 2 3.7 4 2015 2 8 20127 1 3.7 4 2015 2 8 20127 3 3.7 4 2015 2 8 20127 2 3.7 4 2015 2 8 20127 2 3.7 4 2015 2 8 20127 2 3.7 4 2015 2 8 20127 3 3.7 4 2015 2 8 20127 1 3.7 4 2015 2 8 20127 4 3.7 4 2015 2 8 20127 4 3.7 4 2015 2 9 20128 4 3.7 4 2015 2 9 20128 4 3.7 4 2015 2 9 20128 4 3.7 4 2015 2 9 20128 3 3.7 4 2015 2 9 20128 4 3.7 4 2015 2 9 20128 3 3.7 4 2015 2 9 20128 4 3.7 5 2015 1 1 20089 1 3.3 5 2015 1 1 20089 2 3.3 5 2015 1 1 20089 4 3.3 5 2015 1 1 20089 4 3.3 5 2015 1 1 20089 3 3.3 5 2015 1 1 20089 4 3.3 5 2015 1 2 20090 3 3.3 5 2015 1 2 20090 4 3.3 5 2015 1 2 20090 4 3.3 5 2015 1 2 20090 4 3.3 5 2015 1 2 20090 3 3.3 5 2015 1 2 20090 4 3.3 5 2015 1 2 20090 3 3.3 5 2015 1 3 20091 4 3.3 5 2015 1 3 20091 2 3.3 5 2015 1 3 20091 5 3.3 5 2015 1 3 20091 4 3.3 5 2015 1 3 20091 1 3.3 5 2015 1 3 20091 5 3.3 5 2015 1 3 20091 1 3.3 5 2015 1 4 20092 4 3.3 5 2015 1 4 20092 4 3.3 5 2015 1 4 20092 4 3.3 5 2015 1 4 20092 4 3.3 5 2015 1 4 20092 5 3.3 5 2015 1 4 20092 4 3.3 5 2015 1 4 20092 5 3.3 5 2015 1 5 20093 4 3.3 5 2015 1 5 20093 3 3.3 5 2015 1 5 20093 4 3.3 5 2015 1 5 20093 4 3.3 5 2015 1 5 20093 1 3.3 5 2015 1 7 20095 5 3.3 5 2015 1 7 20095 5 3.3 5 2015 1 7 20095 1 3.3 5 2015 1 7 20095 4 3.3 5 2015 1 7 20095 5 3.3 5 2015 1 9 20097 3 3.3 5 2015 1 9 20097 5 3.3 5 2015 1 9 20097 5 3.3 5 2015 1 9 20097 4 3.3 5 2015 1 9 20097 2 3.3 5 2015 1 9 20097 5 3.3 5 2015 2 2 20121 4 3 5 2015 2 2 20121 4 3 5 2015 2 2 20121 4 3 5 2015 2 2 20121 1 3 5 2015 2 2 20121 5 3 5 2015 2 2 20121 5 3 5 2015 2 2 20121 5 3 5 2015 2 5 20124 4 3 5 2015 2 5 20124 5 3 5 2015 2 5 20124 4 3 5 2015 2 5 20124 4 3 5 2015 2 6 20125 1 3 5 2015 2 6 20125 5 3 5 2015 2 6 20125 5 3 5 2015 2 6 20125 3 3 5 2015 2 6 20125 4 3 5 2015 2 6 20125 5 3 5 2015 2 6 20125 4 3 5 2015 2 6 20125 5 3 5 2015 2 8 20127 4 3 5 2015 2 8 20127 4 3 5 2015 2 8 20127 5 3 5 2015 2 8 20127 5 3 5 2015 2 8 20127 4 3 5 2015 2 8 20127 1 3 5 2015 2 9 20128 4 3 5 2015 2 9 20128 1 3 5 2015 2 9 20128 1 3 5 2015 2 9 20128 4 3 5 2015 2 9 20128 5 3 5 2015 2 9 20128 4 3 5 2015 2 9 20128 4 3 end format %td ndate
Comment