Dear all,
I am facing an issue here - my data is obtained from the stock market and since time series data has tendency to be autocorrelated, I decided to test if that's the case using two tests, namely the DW test and also the BG test. The results were consistent, indicating autocorrelation, if the order of autocorrelation is something like 1 or 2, it could easily be dealt with specifying an AR(1) or AR(2) model, however, as you can see below, the lags were way more significant than that. What does this phenomenon imply, and what can I possibly do about it?
Below is my example data, for all it's worth:
I am facing an issue here - my data is obtained from the stock market and since time series data has tendency to be autocorrelated, I decided to test if that's the case using two tests, namely the DW test and also the BG test. The results were consistent, indicating autocorrelation, if the order of autocorrelation is something like 1 or 2, it could easily be dealt with specifying an AR(1) or AR(2) model, however, as you can see below, the lags were way more significant than that. What does this phenomenon imply, and what can I possibly do about it?
Code:
. tsset date time variable: date, 01jan2001 to 31dec2010, but with gaps delta: 1 day . dwstat Number of gaps in sample: 521 Durbin-Watson d-statistic( 3, 2609) = .7229313 . estat bgodfrey, lag(1) Number of gaps in sample: 521 Breusch-Godfrey LM test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 1 | 636.538 1 0.0000 --------------------------------------------------------------------------- H0: no serial correlation . estat bgodfrey, lag(2) Number of gaps in sample: 521 Breusch-Godfrey LM test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 2 | 695.457 2 0.0000 --------------------------------------------------------------------------- H0: no serial correlation . estat bgodfrey, lag(50) Number of gaps in sample: 521 Breusch-Godfrey LM test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 50 | 1008.710 50 0.0000 --------------------------------------------------------------------------- H0: no serial correlation . estat bgodfrey, lag(100) Number of gaps in sample: 521 Breusch-Godfrey LM test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 100 | 1050.282 100 0.0000 --------------------------------------------------------------------------- H0: no serial correlation
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input int date float(csad r_mt abs_r_mt rmt2) 14976 . . . . 14977 1.570728 -.3534996 .3534996 .12496194 14978 2.1024446 -.7965839 .7965839 .6345459 14979 2.229388 1.5501753 1.5501753 2.4030435 14980 .7713282 -.51517767 .51517767 .26540804 14983 2.1556273 -2.815203 2.815203 7.925369 14984 1.4671476 -.7154922 .7154922 .51192915 14985 2.2644396 3.4870846 3.4870846 12.15976 14986 1.5703444 -.9405673 .9405673 .8846669 14987 1.1591344 -.26794058 .26794058 .071792156 14990 1.9483218 -2.778993 2.778993 7.722802 14991 1.8586833 -2.469931 2.469931 6.100557 14992 .7667049 -.3789219 .3789219 .14358181 14993 1.560813 1.3359466 1.3359466 1.7847532 14994 1.683192 1.1070224 1.1070224 1.2254986 14997 0 0 0 0 14998 0 0 0 0 14999 0 0 0 0 15000 0 0 0 0 15001 0 0 0 0 15004 0 0 0 0 15005 0 0 0 0 15006 0 0 0 0 15007 0 0 0 0 15008 0 0 0 0 15011 2.0803628 -3.05803 3.05803 9.351548 15012 .9748077 .04337036 .04337036 .001880988 15013 1.2678893 -.58709294 .58709294 .3446781 15014 1.604526 -4.3798285 4.3798285 19.1829 15015 .9917876 .2995471 .2995471 .08972847 15018 1.569664 -.8122451 .8122451 .6597421 15019 .8885421 .3391319 .3391319 .11501046 15020 1.7289377 1.1798655 1.1798655 1.3920826 15021 1.469052 -.31126085 .31126085 .09688332 15022 1.4224944 .9744703 .9744703 .9495923 15025 1.6597908 3.510377 3.510377 12.322746 15026 0 0 0 0 15027 0 0 0 0 15028 0 0 0 0 15029 0 0 0 0 15032 0 0 0 0 15033 0 0 0 0 15034 1.2572125 9.423772 9.423772 88.80747 15035 1.275415 9.445167 9.445167 89.21117 15036 1.1821964 9.417044 9.417044 88.68071 15039 .83358 9.437843 9.437843 89.07288 15040 3.4699204 4.943833 4.943833 24.44149 15041 4.2142005 -6.86108 6.86108 47.07442 15042 2.3196154 .24586634 .24586634 .06045026 15043 1.494033 7.036363 7.036363 49.5104 15046 2.9070094 4.637869 4.637869 21.50983 15047 3.157141 -1.5542407 1.5542407 2.415664 15048 2.025874 2.5596695 2.5596695 6.551908 15049 1.9587705 -1.498094 1.498094 2.2442858 15050 1.5076005 -.870127 .870127 .757121 15053 1.7753855 3.826742 3.826742 14.643955 15054 1.7674456 .56592834 .56592834 .3202749 15055 1.951145 2.3093104 2.3093104 5.332915 15056 1.836256 6.192546 6.192546 38.34763 15057 2.4204204 -8.198447 8.198447 67.21454 15060 1.1888419 8.16455 8.16455 66.659874 15061 1.936496 3.23113 3.23113 10.4402 15062 1.9047937 .8242897 .8242897 .6794535 15063 2.256077 -.9183025 .9183025 .8432794 15064 1.29831 1.059913 1.059913 1.1234157 15067 1.5063257 2.09295 2.09295 4.38044 15068 1.5023632 .4708089 .4708089 .221661 15069 1.532801 -2.2716038 2.2716038 5.160184 15070 1.1850337 1.204754 1.204754 1.451432 15071 1.4514213 1.1289606 1.1289606 1.274552 15074 1.201572 1.7730404 1.7730404 3.143672 15075 1.1211928 1.2764815 1.2764815 1.629405 15076 1.314867 1.8994558 1.8994558 3.607932 15077 1.2817875 .9410506 .9410506 .8855762 15078 1.4225343 .9015344 .9015344 .8127642 15081 1.4764158 2.912991 2.912991 8.485517 15082 1.5169854 2.3605452 2.3605452 5.572174 15083 1.4291006 2.2689912 2.2689912 5.148321 15084 2.2791367 .57240033 .57240033 .3276421 15085 1.4125174 -.24851386 .24851386 .06175914 15088 2.0327883 -1.4182184 1.4182184 2.0113432 15089 1.355204 3.8184226 3.8184226 14.58035 15090 1.3968363 -2.830132 2.830132 8.009648 15091 1.3878628 -2.1431394 2.1431394 4.593046 15092 1.6446024 -2.867832 2.867832 8.224462 15095 1.1272126 2.7186074 2.7186074 7.390826 15096 0 0 0 0 15097 0 0 0 0 15098 0 0 0 0 15099 0 0 0 0 15102 0 0 0 0 15103 1.463 5.472131 5.472131 29.94422 15104 .9655043 -.14305109 .14305109 .020463614 15105 1.3336984 2.0841575 2.0841575 4.3437123 15106 1.2852207 1.2281387 1.2281387 1.5083246 15109 1.1468617 1.713324 1.713324 2.935479 15110 1.1242508 .7291949 .7291949 .53172517 15111 1.3639222 1.700456 1.700456 2.89155 15112 1.1554041 .5353749 .5353749 .28662625 15113 1.136401 .766858 .766858 .58807117 end format %td date
Comment