In this article, Richard Williams explains why xtdpdml is better than SEM in analyzing panel data. But, what about gsem? In gsem unlike sem we can do multilevel analysis. Is it possible to define unit id as a second level variable and time as nested within the unitid? For example, for the following sample, does it make sense to combine these two equations with lagged dependent variables:
If it's wrong, what is the correct way to run the above system of equations?
Data:
Code:
gsem (y <- l1.y mediator c.moderator##c.x1 M1[unit_id]) (mediator <- l1.medi c.moderator##c.x1 M1[unit_id]), vce(robust)
If it's wrong, what is the correct way to run the above system of equations?
Data:
Code:
clear input float(unit_id yearmonth y x1 x2 moderator mediator) 3 648 -1.673604 -.7442273 -1.0363818 3.271517 3.790306 3 649 .4038841 -.8535328 -1.0363818 3.174138 3.809004 3 650 .562588 -1.1877229 -1.0363818 3.425862 3.77931 3 651 1.291389 -1.146664 -1.0363818 3.412346 3.6407406 3 652 .8052794 -1.1743647 -1.0363818 3.7186666 3.967077 3 653 -.03675416 -.7409243 -1.0363818 3.219872 3.798276 3 654 1.0632977 -.8755629 -1.0363818 3.466667 3.8156135 3 655 -.5068667 -.8839995 -1.0363818 2.842949 3.8489246 3 656 .5646673 -1.376372 -1.0363818 3.360119 3.63149 3 657 .934234 -.8519906 -1.0363818 3.3083334 3.7305555 3 658 .32183555 -.59005296 .7075664 3.7373564 3.793548 4 648 -2.053771 -.8607342 -1.0363818 3.267277 3.7204175 4 649 -.28470853 -.8418642 -1.0363818 3.773889 3.989841 4 650 .1102932 -.457932 -1.0363818 3.4863095 3.9390345 4 651 .5085503 -.2997211 -1.0363818 3.5165405 3.55 4 652 .4732249 -.05104671 -1.0363818 3.5431216 3.605337 4 653 -.3396801 -.3438883 -1.0363818 3.7653334 3.3848386 4 654 -.8023075 -.59110814 -1.0363818 3.746795 3.404524 4 655 .524676 -.6341597 -1.0363818 3.7515874 3.2825396 4 656 -.0806455 -.442387 -1.0363818 3.571839 3.4154506 4 657 .7601319 -.9101606 -1.0363818 4.146528 3.3850396 4 658 -.29708236 -.7848284 .7053064 4.07963 3.9800696 5 648 -.09884956 -2.3671591 -1.0363818 4.0142856 3.9034524 5 649 .3637376 -2.0098896 -1.0363818 3.627564 3.9173334 5 650 .5272369 -2.1749105 -1.0363818 3.279167 3.396795 5 651 .4010301 -2.4400935 -1.0363818 3.641667 3.996528 5 652 .03462299 -1.6249136 -1.0363818 3.607143 3.503472 5 653 -.8958375 -1.634501 -1.0363818 3.972222 3.9333334 5 654 -.8420179 -1.736356 -1.0363818 3.8314815 3.6791666 5 655 -1.972452 -2.0890148 -1.0363818 3.801587 3.4958334 5 656 -.8649931 -1.9769305 -1.0363818 3.795833 3.6608696 5 657 -.13952091 -1.4404632 -1.0363818 3.608696 3.4591954 5 658 -.035976883 -.23603535 .8973646 3.625 3.270988 6 648 .6677211 .25581893 -1.0363818 3.5735295 3.5553334 6 649 .997246 .4341331 -1.0363818 4.1704545 3.642529 6 650 .6545075 .20891613 -1.0363818 3.142593 4.140199 6 651 .8990768 .20612007 -1.0363818 3.4585884 4.068254 6 652 .4727888 .3011284 -1.0363818 3.5944445 4.099575 6 653 -.5000833 .2332805 -1.0363818 3.852193 3.8843474 6 654 1.8032534 .33466095 -1.0363818 3.210563 3.9385715 6 655 -.9693494 .03520535 -1.0363818 3.6065714 3.866164 6 656 .05690836 -.14496662 -1.0363818 3.5489795 3.842613 6 657 .463342 .1866461 -1.0363818 3.4930556 3.975397 6 658 .16892995 .3850788 .6388407 3.357471 3.988834 7 648 .7216926 .3505641 -1.0363818 3.864368 4.069512 7 649 .8041119 .12411392 -1.0363818 3.4160714 3.954662 7 650 .7418164 -.1596837 -1.0363818 4.1182795 4.158704 7 651 .8701565 -.15722057 -1.0363818 4.010552 4.4940276 7 652 .7349644 .025661064 -1.0363818 4.110931 4.38009 7 653 .12824593 .10673832 -1.0363818 4.4591713 4.4671345 7 654 .58063346 .29550174 -1.0363818 4.526656 4.651618 7 655 .10464822 .3558027 -1.0363818 4.379938 4.608889 7 656 .4740608 .3864914 -1.0363818 4.61358 4.4431086 7 657 .4891589 .3713816 -1.0363818 4.579167 4.3469625 7 658 .21748453 1.371178 1.101524 4.451282 4.410873 end format %tm yearmonth
Comment