I have the following extract from my data set. Previously I have always been regressing using standard regression. The below is a panel data set I am trying to predict returns. My previous regression technique would include.
- Add the first variable looking for the highest R2
- Search for the variable that has a Vif < 1.5
- Add the next variable which has the highest R2 and so on.
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float date long n_ticker double close float return double(CurrentRatio EBITDAMargin OperatingMargin ReturnonEquity ReturnonInvestment TotalDebttoEquity) 566 3 263 -34.22053 1.153532 2.111555 1.776075 9.870937 5.660377 1.636456 578 3 173 8.092485 1.169349 1.552444 1.980144 8.282616 6.466227 1.362266 590 3 187 6.417112 1.163803 1.705138 2.020277 9.05641 6.837078 1.613801 602 3 199 -11.55779 1.16347 1.489251 1.495425 6.103352 4.629433 1.678207 614 3 176 12.5 1.118649 .398203 .975844 .330202 2.996226 2.375864 626 3 198 6.565657 1.103763 .876928 .899469 2.485019 2.677665 2.804256 638 3 211 24.170616 1.265924 1.236759 1.305281 7.168884 3.707988 2.29815 650 3 262 8.396947 1.536229 1.916625 1.44031 15.564529 4.736834 2.160753 662 3 284 -9.154929 1.503659 2.544997 1.12709 11.489965 3.720564 2.05678 674 3 258 1037.9845 1.724648 1.290673 1.074457 7.955425 3.434221 2.214412 686 3 2936 . 1.600863 1.755573 1.574647 10.186315 5.011671 2.046044 662 4 1694 23.90791 1.102925 3.251739 1.005691 8.697695 2.328596 3.257762 674 4 2099 60.55264 1.055705 3.36343 1.918263 4.706788 4.556272 3.302475 686 4 3370 . 1.233213 4.717306 3.012499 16.621113 7.115761 2.704151 568 5 1544 3.108808 4.520915 2.84545 .584946 .221084 .302538 .029713 580 5 1592 -17.273869 3.980719 2.620722 2.785319 .34145 1.466508 .034199 592 5 1317 -11.693242 4.261288 -1.439753 2.614927 -2.185296 1.459064 .045428 604 5 1163 -2.493551 5.392828 4.299411 3.600757 1.376361 2.213193 .035874 616 5 1134 -6.613757 5.803672 4.861656 6.854659 1.82866 4.343124 .026494 628 5 1059 24.551464 5.296215 5.558866 5.452456 2.667078 3.501435 .025559 640 5 1319 3.5633056 6.623578 9.020567 4.413812 4.158892 2.901829 .027469 652 5 1366 60.2489 5.534186 7.837246 6.837654 3.375596 4.481231 .044003 664 5 2189 20.3746 6.112259 13.121837 8.427531 4.53286 5.433738 .043286 676 5 2635 34.155598 5.912853 16.003947 12.451296 5.925328 7.918457 .056702 688 5 3535 . 4.951255 16.645107 12.45715 6.691592 8.02914 .044628 566 6 2090 -15.502393 .787745 16.114812 14.404148 10.685256 14.071102 .26994 578 6 1766 -3.227633 .653008 15.043641 16.689926 10.095966 15.560358 .260281 590 6 1709 12.17086 .516029 17.801174 19.038618 12.575282 18.486229 .20144 602 6 1917 -2.2430882 .631695 19.297597 19.26679 12.482496 19.17699 .16233 614 6 1874 -6.990395 .789411 13.699246 19.268045 7.500029 19.71175 .127317 626 6 1743 .4016064 .984651 15.954327 15.377595 9.665289 14.982499 .188781 638 6 1750 22.685715 .788124 7.322011 4.873766 3.434883 4.182513 .260177 650 6 2147 4.1918955 .637539 9.436212 7.46164 5.967268 7.213087 .327634 662 6 2237 -.49173 .61631 10.016571 6.500517 7.703049 6.138543 .361273 674 6 2226 -9.838275 .586048 7.480283 5.62087 5.201201 4.951217 .411017 686 6 2007 . .620024 7.113547 5.43418 5.567587 4.511496 .579442 566 44 476 -14.705882 1.22925 3.58802 2.641761 3.636332 3.807879 .502146 578 44 406 -.9852217 1.03647 3.555774 2.674708 3.969598 4.595811 .540068 590 44 402 15.920398 1.172269 3.632626 3.859146 5.395953 7.665205 .575196 602 44 466 -18.240343 1.444558 5.209759 4.797275 8.586708 9.178143 .408585 614 44 381 -.2624672 1.261443 4.320633 4.190942 6.199939 7.593718 .454564 626 44 380 13.94737 1.340303 3.85776 3.580162 6.233597 6.630123 .450992 638 44 433 30.48499 1.161782 4.496641 3.583221 6.55931 6.431513 .379137 650 44 565 5.132743 1.403239 4.727125 3.764424 6.798162 6.821531 .379116 662 44 594 55.72391 1.46035 6.054383 2.816647 5.562771 4.912945 .349241 674 44 925 77.72973 1.410045 6.285058 3.560656 6.243522 6.237457 .352507 686 44 1644 . 1.443737 6.553181 3.699845 6.520192 6.449924 .27137 566 45 1199 -11.259383 2.654359 5.666802 4.587389 4.270904 6.455836 .032553 578 45 1064 -1.0338346 2.841104 5.27465 4.443822 4.205233 7.0551 .019531 590 45 1053 14.624882 3.105869 5.431878 4.661742 5.366735 8.294602 .012757 602 45 1207 -20.54681 3.164073 6.679317 5.989255 6.356786 9.912534 .011494 614 45 959 4.379562 2.622808 6.297683 5.973038 5.144374 9.08553 .0108 626 45 1001 27.77223 2.312688 5.710885 5.229623 4.674248 7.954516 .027214 638 45 1279 -11.336982 2.196232 5.308342 4.772086 4.559316 7.048852 .027397 650 45 1134 24.69136 2.393031 5.530216 4.49136 4.764084 6.829719 .030711 662 45 1414 26.52051 2.047434 7.457844 3.89209 4.635653 5.665133 .057314 674 45 1789 -7.154835 2.185334 7.932625 4.269797 4.741212 6.083679 .052487 686 45 1661 . 2.658912 8.788437 4.795128 5.07379 6.365007 .03736 566 46 341 -36.07038 2.421563 5.187278 5.221476 2.406475 3.665609 .197911 578 46 218 1.3761468 2.841258 4.8809 4.712845 2.547605 3.794369 .152743 590 46 221 3.167421 2.950077 4.577789 4.367336 2.702975 3.990655 .155009 602 46 228 -18.421053 2.55526 5.47549 5.456662 3.410523 5.083435 .18604 614 46 186 -1.0752689 2.912299 4.121053 4.018581 2.372148 3.713319 .157099 626 46 184 -3.2608695 2.944085 3.646823 3.346989 2.186235 3.060444 .151949 638 46 178 12.35955 3.089353 2.586399 2.383612 1.520383 2.18044 .148052 650 46 200 -1 3.02243 3.459841 3.087964 1.91917 2.73101 .141249 662 46 198 -3.5353534 2.789942 7.973364 3.624257 2.270784 2.960442 .155713 674 46 191 1139.267 2.789589 8.110959 3.479584 2.069594 2.650402 .151372 686 46 2367 . 2.809437 7.895687 3.750022 2.235074 2.804057 .145678 566 47 438 -22.37443 1.252314 4.883672 4.811622 7.032087 6.666667 .255339 578 47 340 -21.47059 1.252719 7.897116 7.883109 10.128531 11.93837 .130436 590 47 267 16.853933 1.441546 7.940974 8.31572 8.656605 12.543275 .109833 602 47 312 11.858974 1.557982 7.749717 7.78665 8.788355 11.909075 .042238 614 47 349 -20.916906 1.722274 7.482656 7.803518 8.057606 12.029142 .049464 626 47 276 5.797101 1.792227 4.106235 5.626554 4.918238 8.092859 .097717 638 47 292 34.931507 1.719116 6.818205 4.267615 8.189889 6.38073 .264241 650 47 394 7.106599 1.800124 8.771713 5.387497 8.939554 7.139047 .221983 662 47 422 18.957346 2.116359 13.435088 4.018145 8.983652 4.790546 .30034 674 47 502 439.64145 2.229569 16.359404 5.418282 11.09623 6.219253 .285759 686 47 2709 . 2.838318 16.742103 5.058298 10.132857 5.61376 .234371 566 52 1398 -11.659513 1.19543 3.015465 2.855703 3.228282 5.616266 .058429 578 52 1235 -20.40486 1.142126 1.720216 1.531114 1.139721 3.251952 .069079 590 52 983 10.986775 1.010925 1.634863 2.214764 -.974621 5.138229 .222226 602 52 1091 -11.457378 1.243876 4.75019 4.14886 6.875073 9.546491 .19704 614 52 966 2.795031 1.389219 2.939644 3.519476 3.564131 8.002209 .155744 626 52 993 -1.9133937 1.362268 2.611215 1.633906 .229034 3.755668 .23263 638 52 974 40.34908 1.327303 2.702712 1.549477 2.9969 3.367028 .226368 650 52 1367 255.52304 1.545995 6.476875 3.692149 8.628429 7.636942 .16513 662 52 4860 18.72428 1.680728 13.267041 4.462214 13.559366 8.209824 .076569 674 52 5770 -6.412478 1.710202 9.434548 5.056776 8.108999 9.452977 .035831 686 52 5400 . 2.256503 10.679837 6.868299 9.91531 11.990254 .168367 575 53 1094 26.05119 .793872 2.110586 2.668882 3.090757 6.402753 .545063 587 53 1379 -20.159536 .883601 2.102772 3.180952 2.835378 7.673539 .641773 599 53 1101 -11.080835 .807093 2.094655 2.567284 4.025907 6.41941 .65895 611 53 979 3.2686415 .931001 2.558923 2.907755 5.719384 7.358998 .638801 623 53 1011 -4.846686 .928089 2.277566 3.074312 3.491358 7.846694 .542874 635 53 962 12.162162 1.024344 2.610714 2.601571 4.555991 6.742506 .557213 647 53 1079 37.905468 1.005138 1.831082 1.712005 4.579382 4.403466 .486218 659 53 1488 83.80376 1.080233 3.131021 2.098067 4.827745 5.542222 .533207 671 53 2735 -17.440584 1.073598 6.330419 2.628702 4.28304 7.091549 .391409 end format %tmNN/CCYY date label values n_ticker n_ticker label def n_ticker 3 "1301", modify label def n_ticker 4 "1333", modify label def n_ticker 5 "1377", modify label def n_ticker 6 "1379", modify label def n_ticker 44 "2001", modify label def n_ticker 45 "2002", modify label def n_ticker 46 "2108", modify label def n_ticker 47 "2109", modify label def n_ticker 52 "2206", modify label def n_ticker 53 "2212", modify preserve local dv return drop `dv' date n_ticker close local iv foreach var of varlist *{ local iv `iv' `var' } restore local idf local r2=0 foreach var of local iv { xtreg `dv' `var' if( e(r2) > `r2'){ local r2=e(r2) local idfn `var' local idf "xtreg `dv' `var'" } } preserve drop `dv' compnumber reportid currency countrycode region country fye sector sectnum web date ticker shortname n_ticker exchange close return `idfn' local iv foreach var of varlist *{ local iv `iv' `var' } restore local iidf local r2=0 foreach var of local iv { `idf' `var' if( e(r2) > `r2'){ local r2=e(r2) local iidf "`idf' `var'" } } //as so on
Comment