Hello,
I have a longitudinal dataset that is shown as follows:
Code:
I need to calculate the total number of non-missing values for the variables shown for each vis_id by seqno. The reason being that I will use the seqno that has the highest number of non-missing variables for each vis_id. I have tried to understand the missingstable command, but I'm getting pretty confused by it and I'm not sure it can do exactly what I want it to do. Does anyone have any advice?
Thank you in advance.
I have a longitudinal dataset that is shown as follows:
Code:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input str8 vis_id double(sfvitaly sfs_func sfrole_e sfmhealt curmetsyn) float totalphqscore double seqno "VIS00002" 55 100 100 92 1 . 1 "VIS00002" 80 100 100 92 1 . 2 "VIS00002" 70 100 100 80 1 . 3 "VIS00002" 60 100 100 76 1 . 4 "VIS00003" 35 50 100 56 0 . 1 "VIS00003" 35 62.5 100 60 1 . 2 "VIS00003" 55 87.5 100 68 1 . 3 "VIS00003" 55 87.5 100 . 1 4 4 "VIS00003" 25 37.5 66.66666666666667 52 1 3 5 "VIS00004" 75 100 100 100 0 . 1 "VIS00004" 40 50 100 80 0 5 2 "VIS00005" 65 100 100 84 . . 1 "VIS00005" 50 100 100 76 1 . 2 "VIS00006" 45 75 0 40 1 . 1 "VIS00007" 45 62.5 0 80 1 2 1 "VIS00008" 80 100 100 . . 0 1 "VIS00009" 75 100 100 84 0 . 1 "VIS00009" 70 100 100 84 0 . 2 "VIS00009" 60 87.5 100 84 0 1 3 "VIS00010" 55 50 33.333333333333336 68 1 . 1 "VIS00010" 40 50 66.66666666666667 60 1 13 2 "VIS00010" 70 100 100 76 1 6 3 "VIS00011" 70 50 100 88 0 . 1 "VIS00011" 75 100 100 88 0 . 2 "VIS00011" 65 100 100 88 0 0 3 "VIS00011" 70 100 100 80 0 0 4 "VIS00013" 40 87.5 100 68 0 . 1 "VIS00014" 75 100 100 80 . 3 1 "VIS00014" 80 100 100 64 0 4 2 "VIS00015" 75 100 100 72 1 . 1 "VIS00015" 75 50 100 92 0 . 2 "VIS00015" 80 50 100 96 0 0 3 "VIS00017" 70 100 100 92 0 0 1 "VIS00018" 20 50 33.333333333333336 48 0 . 1 "VIS00018" 35 37.5 33.333333333333336 72 . . 2 "VIS00018" 15 37.5 66.66666666666667 72 1 . 3 "VIS00018" 30 25 66.66666666666667 64 0 . 4 "VIS00018" 25 50 66.66666666666667 72 0 3 5 "VIS00018" 75 37.5 66.66666666666667 72 0 5 6 "VIS00018" 65 50 100 84 1 4 7 "VIS00019" 65 100 100 88 1 . 1 "VIS00019" 70 100 . 92 1 . 2 "VIS00020" 75 100 100 84 0 . 1 "VIS00020" 65 100 100 80 0 . 2 "VIS00020" 65 100 100 80 0 . 3 "VIS00020" 65 100 100 84 0 . 4 "VIS00020" 60 100 100 88 0 . 5 "VIS00020" 65 100 100 84 0 2 6 "VIS00020" 65 100 100 72 0 1 7 "VIS00021" 75 100 100 88 0 . 1 "VIS00021" 80 87.5 100 84 0 . 2 "VIS00021" 90 100 100 96 . . 3 "VIS00021" 70 100 100 88 . 1 4 "VIS00023" 75 100 100 96 0 . 1 "VIS00023" 75 100 100 88 0 1 2 "VIS00024" 75 100 100 84 0 . 1 "VIS00024" 65 100 100 84 0 . 2 "VIS00024" 70 100 100 84 0 0 3 "VIS00024" 55 100 100 84 0 1 4 "VIS00024" 60 100 100 80 0 1 5 "VIS00026" 55 87.5 100 64 0 . 1 "VIS00026" 70 25 33.333333333333336 56 0 . 2 "VIS00026" 55 62.5 66.66666666666667 44 0 13 3 "VIS00026" 25 62.5 66.66666666666667 56 0 6 4 "VIS00026" 25 75 66.66666666666667 28 1 18 5 "VIS00026" 50 37.5 0 44 0 21 6 "VIS00027" 0 62.5 66.66666666666667 72 0 . 1 "VIS00028" 50 87.5 100 80 1 . 1 "VIS00028" 50 100 100 72 1 2 2 "VIS00028" 70 100 100 88 1 2 3 "VIS00029" 80 100 100 88 0 . 1 "VIS00029" 80 100 100 84 0 . 2 "VIS00029" 70 100 100 92 1 . 3 "VIS00029" 80 75 100 92 1 . 4 "VIS00030" 65 100 100 84 1 . 1 "VIS00030" 50 87.5 100 92 1 1 2 "VIS00031" 80 100 100 88 0 . 1 "VIS00031" 75 100 100 72 1 0 2 "VIS00032" 0 37.5 33.333333333333336 32 0 . 1 "VIS00032" 0 25 0 56 0 12 2 "VIS00033" 45 50 0 56 1 5 1 "VIS00033" 45 50 33.33333333333333 60 1 6 2 "VIS00034" 80 100 100 76 0 . 1 "VIS00034" 60 75 100 64 0 4 2 "VIS00035" 75 100 100 80 1 . 1 "VIS00035" 75 87.5 100 80 1 . 2 "VIS00035" 80 87.5 100 76 1 . 3 "VIS00035" 65 100 66.66666666666667 84 0 1 4 "VIS00036" 80 100 100 88 0 . 1 "VIS00036" 65 50 100 72 0 . 2 "VIS00036" 70 100 100 68 0 2 3 "VIS00036" 70 100 100 76 0 0 4 "VIS00036" 80 50 100 84 0 0 5 "VIS00036" 70 50 100 68 0 1 6 "VIS00037" 80 87.5 100 88 0 . 1 "VIS00037" 80 75 100 88 0 0 2 "VIS00038" 75 100 100 92 0 . 1 "VIS00039" 40 75 100 64 0 9 1 "VIS00040" 30 25 0 84 . 1 1 "VIS00041" 65 100 100 84 0 . 1 end
Thank you in advance.
Comment