Hi,
I'm using a database with bot firm specific (financial) and macroeconomic variables (annual data). I estimated two models using xtlogit, re because the data is cross-sectional (several companies and 10 years). One of the models contains only the financial variables (model 1) and the other contains both financial and macroeconomic variables (model 2). The dependent variable assumes 1 if the company filed for bankruptcy in one year and 0 if the company is active.
I am having a problem with LR test of rho=0. In model 1 the null hypothesis is rejected but when i introduce macroeconomic variables (model 2), the null hypothesis is not rejected.
My question is: Can i still use model 2 or it doesn't make sense to compare it with model 1?
The code of the two estimates is below.
Model 1
Model 2
Many thanks!
I'm using a database with bot firm specific (financial) and macroeconomic variables (annual data). I estimated two models using xtlogit, re because the data is cross-sectional (several companies and 10 years). One of the models contains only the financial variables (model 1) and the other contains both financial and macroeconomic variables (model 2). The dependent variable assumes 1 if the company filed for bankruptcy in one year and 0 if the company is active.
I am having a problem with LR test of rho=0. In model 1 the null hypothesis is rejected but when i introduce macroeconomic variables (model 2), the null hypothesis is not rejected.
My question is: Can i still use model 2 or it doesn't make sense to compare it with model 1?
The code of the two estimates is below.
Model 1
Code:
Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 7.3 max = 9 Integration method: mvaghermite Integration pts. = 12 Wald chi2(25) = 823.70 Log likelihood = -1878.7941 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ status | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- V1 | -3.589235 .8570724 -4.19 0.000 -5.269066 -1.909404 V2 | -.4279108 .0823644 -5.20 0.000 -.5893421 -.2664795 V4 | 1.996244 .2673317 7.47 0.000 1.472284 2.520205 V5 | -5.072776 .6807636 -7.45 0.000 -6.407048 -3.738504 V6 | -.0425941 .2253222 -0.19 0.850 -.4842174 .3990292 V7 | -.1452252 .0502684 -2.89 0.004 -.2437494 -.0467011 V11 | .0183279 .004647 3.94 0.000 .0092199 .0274359 V15 | 1.393574 .218075 6.39 0.000 .9661551 1.820993 V16 | .001962 .0012059 1.63 0.104 -.0004016 .0043255 V17 | 1.184356 .2088272 5.67 0.000 .7750622 1.59365 | sector | 2 | .2556492 .6723397 0.38 0.704 -1.062112 1.573411 3 | .2736469 .707907 0.39 0.699 -1.113825 1.661119 4 | .9151518 .458941 1.99 0.046 .015644 1.81466 5 | 1.01388 .2034456 4.98 0.000 .6151342 1.412626 6 | .1233476 .2127867 0.58 0.562 -.2937068 .5404019 7 | -.2620406 .3344664 -0.78 0.433 -.9175827 .3935016 8 | .2045674 .3736777 0.55 0.584 -.5278274 .9369623 9 | -1.463543 .4967248 -2.95 0.003 -2.437105 -.48998 10 | -.4378541 .3124299 -1.40 0.161 -1.050205 .1744972 11 | -.0301741 .2484104 -0.12 0.903 -.5170495 .4567013 12 | -.5312104 .2595223 -2.05 0.041 -1.039865 -.0225561 13 | -.4360059 .3613646 -1.21 0.228 -1.144267 .2722557 14 | 0 (empty) 15 | -.8903856 .7502058 -1.19 0.235 -2.360762 .5799908 16 | -.5424833 .5780727 -0.94 0.348 -1.675485 .5905183 17 | -.9735522 1.14049 -0.85 0.393 -3.208872 1.261768 | _cons | -8.597101 .7130553 -12.06 0.000 -9.994664 -7.199538 -------------+---------------------------------------------------------------- /lnsig2u | .1491919 .422952 -.6797788 .9781627 -------------+---------------------------------------------------------------- sigma_u | 1.077449 .2278546 .711849 1.630817 rho | .2608307 .0815443 .1334693 .4470283 ------------------------------------------------------------------------------ LR test of rho=0: chibar2(01) = 6.90 Prob >= chibar2 = 0.004
Code:
Random-effects logistic regression Number of obs = 237,724 Group variable: ID Number of groups = 31,607 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 7.5 max = 9 Integration method: mvaghermite Integration pts. = 12 Wald chi2(37) = 1756.42 Log likelihood = -1619.5995 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ status | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- V1 | -3.863255 .9183819 -4.21 0.000 -5.663251 -2.06326 V2 | -.2761301 .0862837 -3.20 0.001 -.445243 -.1070172 V4 | 2.048448 .2672627 7.66 0.000 1.524623 2.572273 V5 | -4.498262 .7261031 -6.20 0.000 -5.921398 -3.075126 V7 | -.1694759 .0568057 -2.98 0.003 -.280813 -.0581387 V11 | .0195027 .0047237 4.13 0.000 .0102445 .0287609 V15 | 1.290578 .2253473 5.73 0.000 .8489054 1.732251 V16 | .002377 .001195 1.99 0.047 .0000349 .004719 V17 | .6493138 .2148664 3.02 0.003 .2281833 1.070444 M2 | -.5574164 .093577 -5.96 0.000 -.7408241 -.3740088 M4 | .2295884 .0824058 2.79 0.005 .0680761 .3911008 M5 | .1142688 .0334717 3.41 0.001 .0486654 .1798722 M6 | .0213722 .0102355 2.09 0.037 .0013111 .0414334 M11 | -3.515599 .8124386 -4.33 0.000 -5.10795 -1.923249 M12 | -.0002193 .0000574 -3.82 0.000 -.0003317 -.0001068 | sector | 2 | .3550126 .6985123 0.51 0.611 -1.014046 1.724071 3 | .5429847 .7310161 0.74 0.458 -.8897806 1.97575 4 | .7643641 .4636417 1.65 0.099 -.1443569 1.673085 5 | 1.183401 .1948808 6.07 0.000 .8014418 1.56536 6 | .3518076 .2103622 1.67 0.094 -.0604949 .76411 7 | -.165129 .3255784 -0.51 0.612 -.803251 .4729929 8 | .7142812 .3585762 1.99 0.046 .0114848 1.417078 9 | -.8113489 .4836383 -1.68 0.093 -1.759263 .1365648 10 | .235248 .3107224 0.76 0.449 -.3737567 .8442527 11 | .0266005 .2444878 0.11 0.913 -.4525867 .5057877 12 | -.1335239 .2502774 -0.53 0.594 -.6240586 .3570108 13 | .0704027 .3491813 0.20 0.840 -.6139802 .7547855 14 | 0 (empty) 15 | -.3887461 .7328763 -0.53 0.596 -1.825157 1.047665 16 | -.1484486 .5398745 -0.27 0.783 -1.206583 .909686 17 | -.6588616 1.092302 -0.60 0.546 -2.799735 1.482011 | country | 2 | 0 (empty) 3 | -1.163774 .560085 -2.08 0.038 -2.261521 -.066028 4 | -.4278757 .6171485 -0.69 0.488 -1.637465 .7817132 5 | -1.17591 .7149728 -1.64 0.100 -2.577231 .2254108 6 | -1.073482 .4042748 -2.66 0.008 -1.865846 -.2811179 7 | 0 (empty) 9 | 3.712456 .7054062 5.26 0.000 2.329885 5.095027 10 | -3.306783 1.314683 -2.52 0.012 -5.883514 -.7300511 11 | 0 (empty) 12 | -.0746633 .4470131 -0.17 0.867 -.9507928 .8014662 | _cons | -14.66771 3.649871 -4.02 0.000 -21.82133 -7.514098 -------------+---------------------------------------------------------------- /lnsig2u | -8.701804 12.62254 -33.44153 16.03792 -------------+---------------------------------------------------------------- sigma_u | .0128952 .081385 5.47e-08 3038.02 rho | .0000505 .0006379 9.11e-16 .9999996 ------------------------------------------------------------------------------ LR test of rho=0: chibar2(01) = 3.2e-04 Prob >= chibar2 = 0.493
Comment