Hi Statalist,
I have conducted multiple regression analyses in a SEM framework (using STATA 13.0). To compare the model fit of the covariate-only model versus the full model (with predictors of interest), I conducted a likelihood ratio test, which produced a chi-square statistic and an associated p-value. Is there a way to compute a 95% CI for the chi-square statistic (from the LR test)? Below is the exact syntax. Thanks!
sem (RC_CNQTOTALT2 <- Female XComorbT1 aget1_centered EducationT1 ///
MOS_StrucT1_w MOS_EPAT1 MOS_tangT1 FFMP_NT1), nocapslatent ///
method(mlmv)
estimate store m1
sem (RC_CNQTOTALT2 <- Female XComorbT1 aget1_centered EducationT1 ///
MOS_StrucT1_w@0 MOS_EPAT1@0 MOS_tangT1@0 FFMP_NT1@0), ///
nocapslatent method(mlmv)
estimate store m2
lrtest m1 m2
I have conducted multiple regression analyses in a SEM framework (using STATA 13.0). To compare the model fit of the covariate-only model versus the full model (with predictors of interest), I conducted a likelihood ratio test, which produced a chi-square statistic and an associated p-value. Is there a way to compute a 95% CI for the chi-square statistic (from the LR test)? Below is the exact syntax. Thanks!
sem (RC_CNQTOTALT2 <- Female XComorbT1 aget1_centered EducationT1 ///
MOS_StrucT1_w MOS_EPAT1 MOS_tangT1 FFMP_NT1), nocapslatent ///
method(mlmv)
estimate store m1
sem (RC_CNQTOTALT2 <- Female XComorbT1 aget1_centered EducationT1 ///
MOS_StrucT1_w@0 MOS_EPAT1@0 MOS_tangT1@0 FFMP_NT1@0), ///
nocapslatent method(mlmv)
estimate store m2
lrtest m1 m2
Comment