Hi Statalist
I have a dataset with grid points (Latitude and Longitude). I want to match these with a GIS file that contains district coordinates (Latitude and Longitude) that are polygon centroids.
As i understand this can be addressed by geoinpoly and geonear
I am trying to use geonear to find the nearest neighbour for every grid point. My issue is that my latitudes and longitudes do not fall in the 90 to -90 and 180 to -180 range as is required.
I will appreciate any suggestions on how to solve this issue as i am quite new to geonear
A sample of my data is
The grid file
The GIS file
I have a dataset with grid points (Latitude and Longitude). I want to match these with a GIS file that contains district coordinates (Latitude and Longitude) that are polygon centroids.
As i understand this can be addressed by geoinpoly and geonear
I am trying to use geonear to find the nearest neighbour for every grid point. My issue is that my latitudes and longitudes do not fall in the 90 to -90 and 180 to -180 range as is required.
I will appreciate any suggestions on how to solve this issue as i am quite new to geonear
A sample of my data is
The grid file
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float(LAT LON idd) 7.5 94.5 1 7.5 94.5 2 7.5 94.5 3 7.5 94.5 4 7.5 94.5 5 7.5 94.5 6 7.5 94.5 7 7.5 94.5 8 7.5 94.5 9 7.5 94.5 10 7.5 94.5 11 7.5 94.5 12 7.5 94.5 13 7.5 94.5 14 7.5 94.5 15 7.5 94.5 16 7.5 94.5 17 7.5 94.5 18 7.5 94.5 19 7.5 94.5 20 7.5 94.5 21 7.5 94.5 22 7.5 94.5 23 7.5 94.5 24 7.5 94.5 25 7.5 94.5 26 7.5 94.5 27 7.5 94.5 28 7.5 94.5 29 7.5 94.5 30 7.5 94.5 31 7.5 94.5 32 7.5 94.5 33 7.5 94.5 34 7.5 94.5 35 7.5 94.5 36 7.5 94.5 37 7.5 94.5 38 7.5 94.5 39 7.5 94.5 40 7.5 94.5 41 7.5 94.5 42 7.5 94.5 43 7.5 94.5 44 7.5 94.5 45 7.5 94.5 46 7.5 94.5 47 7.5 94.5 48 7.5 94.5 49 7.5 94.5 50 7.5 94.5 51 7.5 94.5 52 7.5 94.5 53 7.5 94.5 54 7.5 94.5 55 7.5 94.5 56 7.5 94.5 57 7.5 94.5 58 7.5 94.5 59 7.5 94.5 60 7.5 94.5 61 7.5 94.5 62 7.5 94.5 63 7.5 94.5 64 7.5 94.5 65 7.5 94.5 66 7.5 94.5 67 7.5 94.5 68 7.5 94.5 69 7.5 94.5 70 7.5 94.5 71 7.5 94.5 72 7.5 94.5 73 7.5 94.5 74 7.5 94.5 75 7.5 94.5 76 7.5 94.5 77 7.5 94.5 78 7.5 94.5 79 7.5 94.5 80 7.5 94.5 81 7.5 94.5 82 7.5 94.5 83 7.5 94.5 84 7.5 94.5 85 7.5 94.5 86 7.5 94.5 87 7.5 94.5 88 7.5 94.5 89 7.5 94.5 90 7.5 94.5 91 7.5 94.5 92 7.5 94.5 93 7.5 94.5 94 7.5 94.5 95 7.5 94.5 96 7.5 94.5 97 7.5 94.5 98 7.5 94.5 99 7.5 94.5 100 end
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float(x_c y_c) int id 74.29764 36.37415 1 75.636375 35.38476 2 76.66502 35.36059 3 73.69609 35.758064 4 79.12216 35.030567 5 74.99791 35.2789 6 74.316414 35.416504 7 77.91751 33.934277 8 74.0153 34.667522 9 74.99393 34.76488 10 74.16609 34.38015 11 74.72942 34.44623 12 76.62077 33.812244 13 75.10275 34.245647 14 75.33213 33.8039 15 76.0409 33.457706 16 74.78827 33.945435 17 73.84618 33.8917 18 74.35662 33.758724 19 75.02168 33.83983 20 73.93203 33.27063 21 74.33 33.163204 22 75.45106 33.038002 23 74.82907 33.251595 24 77.60422 32.478596 25 76.41702 32.649895 26 79.3519 32.843716 27 74.94873 32.716347 28 75.6431 32.54342 29 75.46049 32.002804 30 77.44077 31.886263 31 78.61996 32.089985 32 78.39954 31.59011 33 74.92443 31.521526 34 75.987404 31.52455 35 77.06017 31.594364 36 77.6962 31.175465 37 75.43105 31.33191 38 76.73202 31.32611 39 75.778595 31.12359 40 79.11017 31.24749 41 76.61606 30.919376 42 75.883514 31.210377 43 78.50808 30.93282 44 77.00807 31.003105 45 79.45107 30.52177 46 77.47031 30.636984 47 75.97901 30.748606 48 77.96883 30.433144 49 80.14169 30.73001 50 78.55444 30.424166 51 80.25822 29.965845 52 76.83641 30.67591 53 76.48351 30.317503 54 75.86491 30.217686 55 79.59782 29.802814 56 78.75726 29.87205 57 74.09864 29.30311 58 78.40327 29.33682 59 77.62046 29.40121 60 79.46494 29.179787 61 95.84026 28.75149 62 94.5524 28.578394 63 78.59637 28.727774 64 79.12862 28.793043 65 73.17213 28.165806 66 74.705315 28.21952 67 95.0773 28.35754 68 79.44805 28.460186 69 79.97113 28.55045 70 77.18721 28.575996 71 93.88018 28.298384 72 80.64906 28.135067 73 79.86494 27.982725 74 96.56201 28.06059 75 75.65158 28.017847 76 78.96577 28.082516 77 81.57264 27.72303 78 93.56244 27.733534 79 76.68678 27.546114 80 88.52406 27.74051 81 78.18516 27.822206 82 75.437485 27.55957 83 70.99249 27.0859 84 78.82445 27.603064 85 92.55012 27.395876 86 80.86832 27.537664 87 77.76353 27.53769 88 91.9893 27.64019 89 82.16897 27.286453 90 96.41525 27.48775 91 95.07378 27.47257 92 75.973724 26.882647 93 80.1973 27.34674 94 79.62188 27.230976 95 93.1208 27.30229 96 74.31233 27.017635 97 88.16219 27.329447 98 72.94178 26.709484 99 88.37589 27.28216 100 end
Comment