Dear all,
I am using mepoisson in Stata 14.2. I would like to use the margins command to predict prevalence of my outcome variable at certain levels of my other independent variables. My outcome variable "outcome" and my main predictor "predictor1" are binary, "reg" is a categorical variable with three levels (1,5,6). The data is clustered within "country" and "ID".
My question is why the marginal predicted mean at 1#no (reg==1 & predictor1==0) does not equal the constant ( .0611361 versus .0696347). If I run a model without random effects but with the same fixed effects covariates (posted below), the marginal predicted mean at 1#no equals the constant (.0576345). Is it appropriate to use margins to get adjusted prevalences after multilevel poisson regression?
Thank you very much in advance.
Jennyfer
I am using mepoisson in Stata 14.2. I would like to use the margins command to predict prevalence of my outcome variable at certain levels of my other independent variables. My outcome variable "outcome" and my main predictor "predictor1" are binary, "reg" is a categorical variable with three levels (1,5,6). The data is clustered within "country" and "ID".
Code:
mepoisson outcome i.predictor1 i.reg || country: || ID:, irr vce(robust) Fitting fixed-effects model: Iteration 0: log likelihood = -2810.5335 Iteration 1: log likelihood = -1568.9639 Iteration 2: log likelihood = -1556.0247 Iteration 3: log likelihood = -1555.9226 Iteration 4: log likelihood = -1555.9226 Refining starting values: Grid node 0: log likelihood = -1577.2488 Fitting full model: Iteration 0: log pseudolikelihood = -1577.2488 (not concave) Iteration 1: log pseudolikelihood = -1572.9681 (not concave) Iteration 2: log pseudolikelihood = -1569.4319 Iteration 3: log pseudolikelihood = -1547.3335 Iteration 4: log pseudolikelihood = -1546.5528 Iteration 5: log pseudolikelihood = -1546.5161 Iteration 6: log pseudolikelihood = -1546.5157 Iteration 7: log pseudolikelihood = -1546.5157 Mixed-effects Poisson regression Number of obs = 3,508 ------------------------------------------------------------- | No. of Observations per Group Group Variable | Groups Minimum Average Maximum ----------------+-------------------------------------------- country | 7 39 501.1 1,690 ID | 1,620 1 2.2 11 ------------------------------------------------------------- Integration method: mvaghermite Integration pts. = 7 Wald chi2(3) = 1413.67 Log pseudolikelihood = -1546.5157 Prob > chi2 = 0.0000 (Std. Err. adjusted for 7 clusters in country) ------------------------------------------------------------------------------ | Robust outcome | IRR Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- | predictor1 | yes | 2.157889 .0978981 16.95 0.000 1.974295 2.358555 | reg | 5 | 2.259887 .6934752 2.66 0.008 1.238468 4.123716 6 | 1.217198 .3951846 0.61 0.545 .644175 2.299952 | _cons | .0611361 .0185108 -9.23 0.000 .0337731 .1106687 -------------+---------------------------------------------------------------- country | var(_cons)| .1203065 .0843019 .030467 .4750597 -------------+---------------------------------------------------------------- country>ID | var(_cons)| .1400121 .1211855 .0256696 .7636791 ------------------------------------------------------------------------------ . margins predictor1, at(reg=(1 5 6)) vsquish Adjusted predictions Number of obs = 3,508 Model VCE : Robust Expression : Marginal predicted mean, predict() 1._at : reg = 1 2._at : reg = 5 3._at : reg = 6 -------------------------------------------------------------------------------- | Delta-method | Margin Std. Err. z P>|z| [95% Conf. Interval] ---------------+---------------------------------------------------------------- _at#predictor1 | 1#no | .0696347 .0188608 3.69 0.000 .0326682 .1066011 1#yes | .1502638 .0458866 3.27 0.001 .0603277 .2402 2#no | .1573665 .010414 15.11 0.000 .1369554 .1777775 2#yes | .3395793 .0159296 21.32 0.000 .3083578 .3708008 3#no | .0847592 .0056107 15.11 0.000 .0737625 .0957559 3#yes | .1829009 .0075109 24.35 0.000 .1681798 .1976219 -------------------------------------------------------------------------------- .
Code:
poisson outcome i.predictor1 i.reg, irr Iteration 0: log likelihood = -1555.9314 Iteration 1: log likelihood = -1555.9226 Iteration 2: log likelihood = -1555.9226 Poisson regression Number of obs = 3,508 LR chi2(3) = 185.95 Prob > chi2 = 0.0000 Log likelihood = -1555.9226 Pseudo R2 = 0.0564 ------------------------------------------------------------------------------ outcome | IRR Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- predictor1 | yes | 2.100162 .1894557 8.23 0.000 1.75981 2.506338 | reg | 5 | 2.740937 .304444 9.08 0.000 2.204721 3.407568 6 | 1.431582 .2184172 2.35 0.019 1.061569 1.930565 | _cons | .0576345 .0063382 -25.95 0.000 .0464595 .0714975 ------------------------------------------------------------------------------ . margins predictor1, at(reg=(1 5 6)) vsquish Adjusted predictions Number of obs = 3,508 Model VCE : OIM Expression : Predicted number of events, predict() 1._at : reg = 1 2._at : reg = 5 3._at : reg = 6 -------------------------------------------------------------------------------- | Delta-method | Margin Std. Err. z P>|z| [95% Conf. Interval] ---------------+---------------------------------------------------------------- _at#predictor1 | 1#no | .0576345 .0063382 9.09 0.000 .045212 .0700571 1#yes | .1210418 .0130356 9.29 0.000 .0954926 .1465911 2#no | .1579727 .0119175 13.26 0.000 .1346147 .1813306 2#yes | .3317681 .0197923 16.76 0.000 .2929758 .3705604 3#no | .0825086 .0115378 7.15 0.000 .0598949 .1051223 3#yes | .1732813 .0189125 9.16 0.000 .1362135 .2103492 --------------------------------------------------------------------------------
Jennyfer
Comment